

Synthesis and Characterization of some Nanomaterials Doped with some Transition Metals

Thesis

Submitted to

Physics Department

University College for women for Art, Science and Education

Ain Shams University

For the degree of Doctor of Philosophy (Ph.D) in Solid State Physics

Nashwa Mohamed Mahmoud Yousif

NCRRT-Atomic Energy Authority

Supervisors:

Prof.Dr. HamdiaAbd El-HamedZaved

Prof Solid State physics-University College Women for Art,Science and Education-Ain Shams University

Prof.Dr. Lobna Ali AbdEl-Wahab

Prof. and Head of the Division of Radiation Researches in NCRRT-Atomic Energy Authority

Dr. Ashraf Fahem Abo Yousif

Dr. in Solid State Physics Department in NCRRT-Atomic Energy Authority

APPROVEL SHEET

Title of thesis

Synthesis and Characterization of some NanomaterialsDoped with some Transition Metals

Name of the candidate

Nashwa Mohamed Mahmoud Yousif Sayed Ahmed Supervision committee:

Prof. Dr. HamdiaAbd El-HamedZayed

Prof Solid state Physics in faculty of women for Art, Science, and Education, Ain Shams University.

Prof. Dr. Lobna Ali Abdel-Wahab

Prof Solid state Physics and Head of the Division of Radiation Research in NCRRT, Atomic Energy Authority.

Dr. Ashraf Fahem Abo Yousif

Dr. in Solid State Department in NCRRT, Atomic Energy Authority.

Acknowledgements

I would like to express my deep gratitude to my Prof. Dr. Hamdya Abd El Hamed Zayed, Physics Department, Faculty of women for Art, Sciences, and Education, Ain Shams University, for her supervision, keen help and guidance in the course of the representation of the data and thesis.

I wish to express my deep gratitude to my Prof. Dr. Lobna Ali Abd El Wahab, Head of the Division of Radiation Research, NCRRT, Atomic Energy Authority, for suggestion of the point of research, her continual supervision and encouragement made the completion of this work possible.

My thanks to Dr. Ashraf Fahim Abo Yousif for co-operation.

I'm very thankful to my lab mates for their emotional support and sharing my joy and sorrows.

Special thanks are also to colleagues of the solid state in National Center for Radiation Research and Technology.

I am pleased to my deepest gratitude and appreciation for Ass.Prof. Ibrahim Sayed Mohamed Hussain Faculty of Education, Ain Shams University, for his fruitful advice throughout this work and his laboratory facilities as well as all the staff, they have been externally helpful as well as supportive in providing as with facilities needed for the preparation of nanomaterail methods and optical measurements.

DEDICATION

TO MY FATHER'S SOUL

TO MY MOTHER AND MY SISTER

TO MY HUSBAND AND MY SONS

Abstract

Prepared Cd_{1-x} TM_xO where TM (Transition metals) (TM= Co, Cr, Cu, Mn, Fe and Ni) and (x=0.1) in two forms nanopowder and thin film by two methods Co-precipitate for nanopowder samples and Sol-Gel for thin film samples.XRD pattern for nanopowdersamples have crystalline nature, the grain size is 47.62nm for undoped CdO and about 47.65 to 57.07nm for doped CdO. The values of grain size and strain and dislocation density increase with adding transition metals. The values of glass transition temperature (T_g) of investigated samples decrease with adding transition metals; this means that the stability of the investigated samples decrease. The reflectance of the nanopowder samples increases with increasing the wavelength. The band gap energy (E_g) is 2.007eV with direct transition, the values of (E_g) increase with the addition of TM, this effect are frequently observed in n-type semiconductors. The width of tails of the localized states in the gap (E_s) decreases with the addition of TM, it represents the decrease of disorder. The refractive index (n), the dielectric constant (ε_1), the dielectric loss (ε_2) and the dielectric relaxation time (τ) was estimated for nanopowder samples.

The agglomeration increases due to the decrease in surface area for the thin film samples. XRD pattern for thin samples have polycrystalline structure; the grain size for CdO thin film is 8.23nm; the unit cell volume is reduced with adding transition metals; the strain, the dislocation density and lattice parameter were estimated. the transmittance of thin films increases by adding due to the absorbance decreases by free carriers; the band gap energy (E_g), the refractive index (n), the dielectric constant, the dielectric losses and the optical conductivity were estimated for thin film samples. The electrical conductivity decreases with temperature and with adding transition metals. The majority carriers are electrons, which proved that CdO thin films are n-type semiconductors. The hall coefficient (R_H) and mobility were estimated. The ac conductivity for single-electron motion undergoing Overlapping Larger Polaron Tunneling (OLPT) with

polaron radius (r0=2.5). The general trend of dielectric constant (ϵ_1) at applied selected frequencies is decreasing for CdO thin film and is increasing temperature. CdO undoped and doped TM/Si Substrate are good diode, Mn CdO/P-Si heterojunction act as a good candidates for the production of high- efficieny photodectors; the ideality factor (n), the effective potential barrier height (ϕ_{B0}), the series resistance (R_s) and optoresponse (S^*_{curr}) were estimated.

Contents

Contents	page
<u>Chapter one:</u>	
1.1. Background	1
1.2. Classification	3
1.3 Characterization	4
1.4. Semiconductor Nanomaterials	5
1.5. Classes of Nanomaterials	7
1.6. Size Effects	8
1.7. Applications of nanoparticles	9
1.7.1. Putting nanotechnology to use	9
1.7.1. A. Drug-Delivery Technique	9
1.7.1. B. Nano films	9
1.7.1. C. Water Filtration technique	10
1.7.1.D. Nano Tubes	10
1.7.2. Nanotechnology applications	10
1.7.2. A. Nanorobot Development for Defense	11
1.7.2. B. Medical Nanorobots	11
1.7.2. C. Nanotechnology and Space	12
1.7.2.D. Nanotechnology in Electronics: Nanoelectronics	12
1.7.2. E. Nanotechnology in Medicine	13 13
1.7.2. F. Current Applications	13
1.8. Risks of Nanotechnology	14
1.9 Pervious Works	14
Chapter Two:	
2.1. Methods for preparation of Nanoparticles	27
2.2. Sol- Gel	27
2.2.1. Sol-Gel process	27

Contents	page
2.2.2. Applications of Sol-Gel	32
2.2.2. A. Protective coatings	32
2.2.2. A. Flotective coatings 2.2.2. B. Thin films and fibers	32
2.2.2. C. Nanoscale powders	32
2.2.2. D. Opto-mechanical	33
2.3. Co precipitation	34
2.c. co procipitation	5.
2.4. Optical Properties of Nanostructure Materials	39
2.4.1. Optical absorption mechanism	40
2.4.2 Absorption Edge	40
2.4.3. Optical constants	41
2.5. Diffused Reflection	43
2.5.1. Mechanism	44
2.5.2. Principles	45
2.5.3. The Kubelka-Munk theory	47
2.6. DC electrical conductivity	50
2.7. AC electrical conductivity	52
2.7.1. Models of ac conductivity	53
2.7.1. A. Quantum Mechanical Tunneling	53
2.7.1. B. Small-Polaron Tunneling	54
2.7.1. C. Large-Polaron Tunneling	54
2.7.1. D. Correlated Barrier Hopping of Electrons	55
2.8. Hall Effect	56
2.8. A. Theory	56
2.8. B. Explanation of the Quantum Hall Effect	60
<u>Chapter Three:</u>	
3.1. Material Preparation	63
3.1. A. Preparation of thin Film samples by Sol-Gel method	63
3.1. B. Nanopowder samples by Co-Precipitate method	64

Contents	page
3.2. Electron dispersive analysis (EDX) and scanning electron microscope (SEM)	65
3.3. X-ray Diffraction	66
3.4. Thermal Measurements	66
3.4. A. Differential Thermal Analysis (DTA)	66 67
3.4. B. Thermo gravimetric Analyzer (TGA)	
3.5. Electrical measurements	68 68
3.5. A. DC conductivity measurements3.5. B. AC conductivity measurements	69
3.5. C. Hall Effect	69
3.6. Optical measurements	70
3.6. A. Spectrophotometer for Thin Film Samples	70
3.6. B. Diffuse Reflectance Spectroscopy for	71
Nanopowdersamples	
<u>Chapter Four:</u>	
4.1. Structural Identification	73
4.1.1. Energy Dispersive X-ray analysis (EDX)	73
4.1.2. X-ray powder Diffraction	73 76
4.1.3. Thermal Analysis	
4.1.3.1. Transition temperature	76
4.1.3.2. Kinetics study of Decomposition	77
4.2. Optical Properties	81
Chapter five:	
5.1. Structural Identification	92
5.1.1. Energy Dispersive X-ray analysis (EDX)	92
5.1.2. Scanning Electron Microscope (SEM)	93
5.1.2. X-ray Diffraction	95
5.2. Optical Properties of thin films by spectrophotometer	98
5.3. Electrical Properties	108

Contents	page
5.3.1. DC Conductivity	108
5.3.2. Hall Coefficient (RH), Carrier Concentration (n) and Mobility	111
5.3.3. Ac electrical conductivity	116
<u>Chapter Six:</u>	
6.1. Introduction of heterojunction	128
6.2. Energy band alignment	129
6.3. Experimental techniques	131
6.4. Current-Voltage Characteristics of n-CdO/P-Si heterojunction diode	132
6.5. Optoelectronic measurements	134
References	140
Conclusion	

List of Figures

Name of Figures	page
Fig.(1.1) Schematics change in the band structure in going from a bulk crystal to nanocrystal to molecule	6
Fig.(1.2) Ilustrstrates the four classes of nanomaterials	8
Fig. (2.1) Schematic of Sol-Gel	29
Fig. (2.2) Typical Co-precipitation method for micro and nanoparticle synthesis	35
Fig. (2.3) Optical inter-band transition in (a) direct and (b) indirect band gap semiconductor	41
Fig. (2.4) The diffuse and specular reflection from a glossy surface	44
Fig. (2.5) General mechanism of diffuse reflection by a solid surface (reflection phenomena not represented)	45
Fig. (2.6) Diffused reflection from an irregular surface	47
Fig. (2.7) Cross-Sectional diagram of a powder layer	47
Fig. (2.8) The temperature dependence of DC conductivity expected for a-S.C.	52
Fig. (2.9) Frequency exponent s as a function of temperature for all mechanisms of AC conductivity	56
Fig. (2.10) Hall Effect geometry, this arrangement corresponds to our laboratory set up.	57
Fig. (2.11) Hall effect geometry again; the strip has a thickness δ , length 1, and height h.	58

Name of Figures	page
Fig. (2.12) Quantum Hall Effect	62
Fig.(3.1) Schematic diagram of sol-gel process for production thin film and nanopowder samples	63
Fig.(3.2) Schematic diagram of co-precipitate process for production and nanopowder samples	64
Fig.(3.3) Scanning electron microscope (SEM) and electron dispersion X-ray (EDX)	65
Fig. (3.4) Shimadzu X-ray Diffractometer XRD-6000	66
Fig. (3.5) Differential thermal analysis (DTA)	67
Fig. (3.6) thermogravimetric analyzer (TGA)	67
Fig.(3.7) Block diagram of circuit used for dc conductivity	68
Fig. (3.8) Block diagram of ac circuit.	69
Fig. (3.9) Hall effect circuit	70
Fig. (3.10) JASCO V-670 spectrometer	71
Fig. (3.11) JASCO V-550 UV/ViS spectrometer	72

Name of Figures	Page
Fig. (4.1) X-ray diffraction (XRD) for the as-prepared compositions	76
Fig. (4.2) DTA- thermograms of nanopowder investigated	78
sample Fig. (4.3) TGA- thermograms of nanopowder investigated sample	78,79 ,80
Fig. (4.4) The dependence of reflectance on wavelength of the investigated nanopowder samples	82
Fig. (4.5) $(F(R) hv/t)^2$ versus the photon energy (hv) of the investigated nanopowder samples	84
Fig. (4.6) log α as a function of photon energy (h υ) of the investigated nanopowder samples	85
Fig (4.7) the dependence of refractive index (n) on the wavelength(λ) of the investigated nanopowder samples	87
Fig. (4.8) the dielectric constant dependence of the photon energy of the investigated samples	88
Fig. (4.9) the dielectric loss dependence of the photon energy of the investigated nanopowder samples	89
Fig. (4.10) the dependence of the dielectric relaxation time (τ) on wavelength of the investigated nanopowder samples	90
Fig. (4.11) the dependence of the dissipation factor (tan δ) on wavelength of the investigated nanopowder samples	91

Name of Figures	Page
Figure (5.1) illustrates the images and surface morphology of (CdO, Cr CdO, Co CdO, Cu CdO, Fe CdO, MnCdO and NiCdO respectively) thin film investigated samples.	93,94
Figure (5.2) XRD Diffraction patterns of thin film investigated samples	95
Fig.ure(5.3(a,b)) Transmittance and Absorbance of undoped and doped CdOthin film samples	99
Figure (5.4) The plots of $(\alpha h \upsilon)^2 vs$. photon energy of the undoped and doped CdO	101
Figure (5.5) Log α as a function of photon energy (hv).	102
Figure (5.6) plot of extinction coefficient (k) vs photon energy (hυ).	104
Figure (5.7) the refractive index dependence of wavelength for the investigated films	104
Figure (5.8) the optical conductivity dependence on the photon energy for the investigated thin films	106
Figure (5.9) the dielectric constant (ε_1) and the dielectric loss (ε_2) dependence on the photon energy (hv) of the investigated thin film samples.	107
Figure $(5.10)\ln\sigma_{dC}$ against temperature of the investigated thin film samples	110
Figure (5.11) illustrate the Hall coefficient (R _H) versus temperature (T) of the investigated thin film samples	112
Figure (5.12) Carrier Concentration (n) versus temperature of the investigated thin film samples.	113

Name of Figures	Page
Figure (5.13) Mobility (μ) versus temperature of the investigated thin film samples	114
Figure (5.14) frequency-dependent conductivity of the investigated thin film samples.	116,117
Figure (5.15) the dependence of the exponent S on temperature T for the investigated thin film samples	118,119
Figure (5.16) the dependence of AC conductivity on temperature of the investigated thin film samples	120, 121
Figure (5.17) the Dielectric Constant (ϵ_1) dependence on temperature at different frequencies for investigated thin film samples.	123,124,125
Fig. (6.1) the types of semiconductor heterojunctions	131
Fig.(6.2)The schematic structure of n-CdO/p-Si heterojunction diode.	132
Fig.(6.3) illustrate the relation between voltage (v) and current (I), ln I in dark and under illumination for the investigated samples heterojunction diode.	136,137,138, 139