Characterization of Differential Antibody Production against Hepatitis C Virus in Egyptian Chronic HCV Infection and Healthcare Workers

Thesis

Submitted for Partial Fulfillment of the Master Degree in Clinical and Chemical Pathology

By

Doaa Essam Eldein Mahmoud Shalaby
MB, BCh

Ain Shams University

Supervised by

Prof. Dr. Mona Mohammed Rafik

Professor of Clinical and Chemical Pathology Faculty of Medicine - Ain Shams University

Dr. Dina Ahmed Soliman

Assistant Professor of Chemical & Clinical Pathology Faculty of Medicine-Ain Shams University

Dr. Nesreen Ali Mohammed

Lecturer of Clinical and Chemical Pathology Faculty of Medicine - Ain Shams University

> Faculty of Medicine Ain Shams University 2015

Acknowledgment

First and foremost, I feel always indebted to AUAH, the Most Kind and Most Merciful.

I'd like to express my respectful thanks and profound gratitude to **Prof. Dr. Mona**Mohammed Rafik, Professor of Clinical and Chemical Pathology - Faculty of Medicine- Ain Shams University for his keen guidance, kind supervision, valuable advice and continuous encouragement, which made possible the completion of this work.

I am also delighted to express my deepest gratitude and thanks to **Dr. Dina Ahmed**Soliman, Assistant Professor of Chemical & Clinical Pathology, Faculty of Medicine, Ain Shams University, for his kind care, continuous supervision, valuable instructions, constant help and great assistance throughout this work.

I am deeply thankful to **Dr. Mesreen Ali Mohammed,** Lecturer of Clinical and Chemical
Pathology, Faculty of Medicine, Ain Shams University,
for her great help, active participation and guidance.

Doaa Essam Eldein Mahmoud Shalaby

This work is dedicated to . . .

My beloved father, to whom I owe everything I ever did in my life and will achieve

My mother for always being there for me

My Aunt (Dr. Salwa Bakr) for her love and help.

My brother and my sister for their support

Finally my Husband and my lovely son for being the light of my life

List of Contents

Title	Page No.
List of Tables	i
List of Figures	
List of Abbreviations	
Introduction	1
Aim of the Work	
Review of Literature	
Structure of Hepatitis C Virus	4
■ Transmission of HCV	15
HCV Life Cycle	18
 Immunopathogenesis of HCV Infection 	20
o Innate Immunity	21
o Adaptive Immunity	30
■ Diagnostic Methods of HCV	45
 Role of Viral Proteins in HCV Immunopathogenesis 	53
HCV Structural and Non-Structural Proteins i Chronic HCV Infection	
Subjects and Methods	63
Results	72
Discussion	88
Summary	97
Conclusions	103
References	105
Arabic Summary	

List of Tables

Table No.	Title Pag	e No.
Table (1):	Chemokine and chemokine receptors in the immunopathogenesis of HCV infection	42
Table (2):	Descriptive Statistics of the Studied Groups	
Table (3):	Comparative Statistics of HCV Antibody Status by ELISA and RIBA	
Table (4):	Statistical Comparison of RIBA and HCV Ab Results by ELISA in Studied	
Table (5):	Comparative Statistics of RIBA Results	
Table (6):	in Studied Groups Comparative Statistics of RIBA Results	
Table (7):	and ALT Level	
Table (8):	Distribution of Reactivity to HCV Antigens in the Studied Group with	10
Table (9):	Indeterminate RIBA. Comparative Statistics of Antibody Reactivity to Core1 in the Studied	79
Table (10):	Groups Comparative Statistics of Antibody Reactivity to Core2 in the Studied	80
Table (11):	Groups	80
Table (12):	Reactivity to E2 in the Studied Groups Comparative Statistics of Antibody	81
Table (13):	Reactivity to NS3 in the Studied Groups. Comparative Statistics of Antibody	81
	Reactivity to NS4 in the Studied Groups	82

List of Tables (Cont...)

Table No.	Title Pag	ge No.
Table (14):	Comparative Statistics of Antibody	
	Reactivity to NS5 in the Studied	
	Groups.	83
Table (15):	Frequency Distribution of Specific	
	Antibody Responses in Studied groups	84
Table (16):	Multiple Regression Analysis for	
	Discrimination to HCV Antigens	
	Reactivity among HCW and Chronic	85
Table (17):	Multiple Regression Analysis for	
	Discrimination to HCV Antigens	
	Reactivity Among Normal and Chronic	85
Table (18):	Frequency of positive bands observed in	
	RIBA testing in Studied Groups	86
Table (19):	Comparative Statistics of Viral Load	
	with Number of Bands in Chronic HCV	
	Patients	87

List of Figures

Fig. No.	Title	Page No.
Figure (1):	Structure of Hepatitis C Virus	4
Figure (2):	Proteins encoded by the HCV genom	e5
Figure (3):	Geographic distribution of HCV species	
Figure (4):	HCV receptor for cell entry	19
Figure (5):	Life cycle of hepatitis C virus: binding and internalization	
Figure (6):	HCV attenuates innate immune resp	onses23
Figure (7):	INNO_LIA HCVscore test strip	70
Figure (8):	Results obtained with anti-HCV E and HCV-RIBA in different st groups.	udied
Figure (9):	Comparison of antibody responsing individual hepatitis C virus (antigens between studied groups	HCV)
Figure (10):	Distribution of RIBA Bands in St Groups	

List of Abbreviations

Abb.	Full term
Ab:	Antibodies
	Antigen-presenting cells
	Alternative open reading frame protein
CLDN-1:	
CTL:	Cytotoxic T lymphocyte
DC:	Dendritic cells
E1 and E2:	Envelop proteins
EIA:	Enzyme immunoassay
ER:	Endoplasmic reticulum
ERK:	Extracellular regulated kinase
GAGs:	Glucosaminoglycans
HCC:	Hepatocellular carcinoma
HCV:	Hepatitis C virus
HDL:	High density lipoprotein
HIV:	Human immunodeficiency virus
HVR:	Hypervariable region
iDCs:	Immature dendritic cells
IDU:	Intravenous drug use
INF:	Interferon
IPS-1:	IFN- β promoter stimulator protein 1
IRAK:	Interleukin -1 receptor-associated kinase
IRF-3:	IFN regulatory factor 3
ISDR:	Interferon- α sensitivity-determining region
ISGs:	IFN stimulated genes
ISREs:	IFN-stimulated response elements
JNK:	c-jun N-terminal kinases
MAPK:	Mitogen activated protein kinases
mDC:	Mature DCs

List of Abbreviations (Cont...)

Abb.	Full term
MHC	: Major histocompatibility complex
	: MHC class-I related chain A/B
NAT	: Nuclear acid testing
NK	: Natural killer
NKT	: Natural killer T cell
NS	: Nonstructural proteins
OCLN	: Occludin
OS	: Oxidative stress
PAMPs	: Pathogen recognition receptors
PD-1	: Programmed death-1 receptor
PDCs	: Plasmacytoid dendritic cells
PIAS	: Protein inhibitor of activated STAT1
PKA	: Protein kinase A
PP2A	: Protein phosphatase 2A
RIBA	: Recombinant immunoblot antibody assay
RIG-I	: Retinoic acid inducible gene-I
ROS	: Reactive oxygen species
RT-PCR	: Reverse-transcription PCR
SPR	: Surface plasmon resonance
SRB-1	: Scavenger receptor type B class 1 protein
SVR	: Sustained virological response
TCRs	: T-cells receptors
$TGF\text{-}\beta$: Transforming growth factor β
TH1	: T helper 1
TH2	: T helper 2
TLRs	: Toll like receptors
TMDs	: Transmembrane domains
$TNF\text{-}\alpha$: Tuomur necrotic factor α
Tregs	: T regulatory cells

Introduction

epatitis C virus (HCV) infects >2% of the world population, with an estimated >500,000 new infections annually in the highest endemic country, Egypt (Miller and Abu-Raddad, 2010). In the United States, the rate of symptomatic HCV infection declined over the last decade and began to level out at ~ 4 million cases around 2005 (Wasley et al., 2007). Alarmingly, however, in developed countries, new cases are often associated with the younger age group (15-24 y) because of illegal injection drug use (Onofrey et al., 2011). Although some HCV-infected individuals can resolve infection without drug treatment, ~70% develop chronic hepatitis and, over a period of 20–30 y, 20–30% will develop liver cirrhosis and 1–5% hepatocellular carcinoma (Lemon et al., 2007).

Hepatitis C virus (HCV) is classified in the *Hepacivirus* genus within the *Flaviviridae* family. The viral genome constitutes a 9.6-kb single-stranded positive-sense RNA with 5' and 3' non coding regions and a long open reading frame encoding a polyprotein precursor of about 3,000 amino acids in length. The HCV polyprotein precursor is co- and post-translationally processed by cellular and viral proteases to yield 11 viral proteins *(Lindenbach and Rice, 2005)*. The structural HCV proteins include the core protein and transmembrane glycoproteins, E1 and E2. The core region also encodes for an alternative open reading frame protein (ARFP) or F protein

1

whose function is presently not known (Xu etal., 2001). The region between the structural and nonstructural genes encodes for an integral membrane cation channel protein p7 (Griffin et al., 2003) which is essential for virus production (Jones et al., 2007). HCV has six nonstructural proteins; NS2, NS3 NS4A, NS4B, NS5A and NS5B (Moradpour et al., 2007).

The humoral response to HCV infection is broadly targeted, with antibodies to both structural and non-structural proteins found in most cases. Although the commercial methodology to detect HCV-specific RNA and antibody responses in patient sera has greatly advanced in recent years there is no detailed information of the immunogenicity of different HCV proteins in patients suffering from chronic HCV infection (Sillanpää et al., 2009).

On the other hand, healthy carriers of hepatitis C virus (HCV) infection exhibit a specific antibody response against HCV antigens, which could play a role in disease control. Detection of these antibodies may permit a thorough characterization of this response and further identify particular antibodies with potential clinical value (Barban et al., 2000).

AIM OF THE WORK

o determine qualitative differences in host antibody responses to different HCV proteins in Egyptian chronic HCV infection and healthy care workers and their correlation to clinical outcome.

3 _____

STRUCTURE OF HEPATITIS C VIRUS:

CV is a small (50 nm in size), enveloped, single-stranded, positive sense RNA virus. It is the only known member of the hepacivirus genus in the family Flaviviridae (*Op De beek and Dubuisson, 2003*) (*Figure 1*).

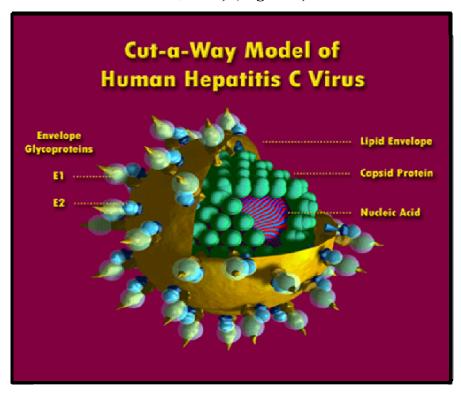


Figure (1): Structure of Hepatitis C Virus (www.hepcprimer.com).

The viral genome constitutes a 9.6-kb single-stranded positive-sense RNA with 5' and 3' non coding regions and a long open reading frame encoding a polyprotein precursor of about 3, 000 amino acids in length. The HCV polyprotein precursor is co- and post- translationally processed by cellular

A

and viral proteases to yield 11 viral proteins (Lindenbach and *Rice*, 2005). The structural HCV proteins include the core protein and transmembrane glycoproteins, E1 and E2. The core region also encodes for an alternative open reading frame protein (ARFP) or F protein whose function is not known (Xu al., 2001). The region between the structural and nonstructural genes encodes for an integral membrane cation channel protein p7 (Griffin et al., 2003) which is essential for virus production (Jones et al., 2007). HCV has six nonstructural proteins; NS2, NS3, NS4A, NS4B, NS5A and NS5B (Moradpour et al., 2007) (Figure 2).

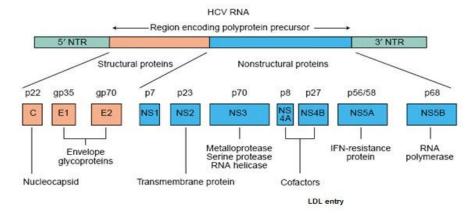


Figure (2): Proteins encoded by the HCV genome. HCV is formed by an enveloped particle harbouring a plus-strand RNA of 9.6 kb. The genome carries a long openreading frame (ORF) encoding a polyprotein precursor of 3010 amino acids. Translation of the HCV ORF is directed via a 340 nucleotide long 5' nontranslated region (NTR) functioning as an internal ribosome entry site; it permits the direct binding of ribosomes in close proximity to the start codon of the ORF. The HCV polyprotein is cleaved co- and post-translationally by cellular and viral proteases into ten different products, with the structural proteins (core (C), E1 and E2) located in the N-terminal third and the nonstructural (NS2-5) replicative proteins in the remainder. Putative functions of the cleavage products are shown (Beaulieu and Tsantrizos, 2004).

HCV Structural Proteins

Core Protein

HCV core is a highly conserved basic protein which makes up the viral nucleocapsid. Core consists of HCV first 191 amino acids and can be divided into three domains on the basis of hydrophobicity: domain 1 (amino acids 1 - 117) contains mainly basic residues with two short hydrophobic regions, domain 2 (amino acids 118 - 174) is less basic and more hydrophobic and its C -terminus is at the end of p21, domain 3 (amino acids 175 - 191) is highly hydrophobic and acts as a signal sequence for E1 envelope protein (Bukh et al., 1994). Core protein can bind viral RNA (Santolini et al., 1994) via domain 1 (amino acids 1 - 74). Core is a cytosolic membrane-bound protein, which has been found to associate with the endoplasmic reticulum (ER), lipid droplets, mitochondria and the nucleus. It is also involved directly or indirectly involved in hepatocarcinogenesis and steatosis hepatitis (Hope et al., 2002). HCV core protein interacts with numerous cellular proteins and to affect host cell functions such as gene transcription, lipid metabolism, apoptosis and various signaling pathways (Tellinghuisen and Rice, 2002)

Envelope Glycoproteins

HCV consist of two "envelop proteins" E1 and E2. These proteins are highly glycosylated and play an important role in cell entry. E1 serves as the fusogenic subunit and that E2 acts as the receptor binding subunit of the HCV envelope. The E1