Audiological Assessment in Patients with Chronic Obstructive Pulmonary Disease

Thesis

Submitted for partial fulfillment of Master degree in Chest Diseases & Tuberculosis

By

Maha Araby Hasssan

M B Bch

Under Supervision of

Professor Aya Mohammed Abdel Dayem

Professor of Chest Diseases
Faculty of Medicine - Ain Shams University

Ass. Professor Iman Hassan Galal

Assistant Professor of Chest Diseases Faculty of Medicine - Ain Shams University

Dr. Fathy Naeem

Lecturer of Audiology
Faculty of Medicine - Ain Shams University

Faculty of Medicine
AinShams University
2016

Acknowledgement

First of all, thanks to Allah, the kind and merciful.

I would like to offer my sincerest gratitude and immense appreciation to my supervisor **Prof. Aya Mohammed Abdel_Dayem,** Professor of Chest Diseases, Faculty of Medicine; Ain Shams University, for his faithful guidance and helpful instructions.

My deepest gratitude and thankfulness are due to Assistant Prof. Eman Hassan,, Assistant Professor of Chest Diseases, Ain shams University, for his generous advice and perpetual supervision.

Indeed I feel much grateful to **Dr. Fathy Naeem**, Lecturer of Audiology, Faculty of Medicine, Ain shams University, for her willingness and unlimited support throughout this work.

I would like to extend my thanks to all the staff and colleagues of Chest Department, Faculty of Medicine, Ain shams University for their true and honest support throughout the whole work.

Particular thanks and special appreciation are due to my Supportive family, without their help this work would not come to light.

List of Contents

	Page
•	Introduction1
•	Aim of the Work2
•	Review of Literature:
	- Chapter 1 : Chronic obstructive pulmonary disease3
	- Chapter 2: Systemic manifestations of COPD 17
	- Chapter 3: Anatomy and physiologyof the Auditory system
	Chapter 4: Basic Audiological Assessment37
	Chapter 5: COPD and hearing loss44
•	Patients and Methods48
•	Results59
•	Discussion85
•	Summary91
•	Conclusion93
•	Recommendations94
•	References95
•	Arabic Summary

List of Abbreviations

ABR	Auditory Brainstem Response		
COPD Chronic Obstructive Pulmonary Disease			
CRP	C-reactive protein		
dB Decibel			
DLCO	Diffusion capacity of the lungs for carbon monoxide		
EP	Electrochemical Potentials		
ESR	Erythrocyte Sedimentation Rate		
FEV1	FEV1 forced expiratory volume in 1st second		
FVC	VC Forced Vital Capacity		
GERD	Gasroesophageal reflux disease		
GOLD	GOLD Global Initiative for Chronic Obstructive Lung Disease		
HIV	The human immunodeficiency virus		
HZ	Hertz		
ICU	ICU Intensive Care Unit		
ME	Middle Ear		
NHANES 3	The third National Health And Nutrition Examination Survey		
NO	Nitric Oxide		

PO ₂	Partial pressure of oxygen
RA	Room air
ROS	reactive oxygen species
TEAC	Trolox-equivalent antioxidant capacity
TM	Tympanic Membrane
TNF	Tumor necrosis factor
WBC	white blood cells
WHO	World Health Organization
YLD	years of living with disability

List of Tables

Table N	o. Title	Page No.
	Results	
Table (1):	demoghraghic distribution of patients	
Table (2):	demoghraghic data of group	
Table (3):	smoking history of studied patients	60
Table (4):	Functional characteristics of patients	
Table (5):	Audiogram results of the COPD gronumber of COPD affected:	patients
Table (6):	Tympanometry results in the patients	
Table (7):	Comparison between Audiometry reright and left ears in group	control

Table (8):	comparison between results of audimetry of right ear and left ear in COPD patients group
Table (9):	Comparison between right and left audiogram according to low frequency and high frequency in COPD patients group 66
Table (10	O): Comparison between right and left tympanometry in COPD group66
Table (11)	comparison between audiometry frequencies results in control group and COPD patient group
Table (12)	comparison of audiogram results between control group and COPD patients group
Table (13)	: predictive performance of audiogram among COPD Patients
Table (14)	c: Comparison between smoking status and demographic data among COPD group
Table (15): comparison between smoking status as regards audiogram and tympanometry in COPD Patien Ggroup

Table (16): Correlation between smoking index and			
audiogram results in low and high			
frequencies among COPD			
group74			
Table (17): comparison between smoking index as			
regards tympanometry results in COPD			
group75			
Table (18): Correlation between duration of smoking and			
audiogram results in low and high			
frequencies in COPD group75			
Table (19): comparison between duration of smoking as			
regards types of tympanometry in COPD group			
group			
Table (20): Correlation between BMI and audiogram			
results in low and high frequencies in COPD			
group76			
Table (21): comparison between tympanometry results			
asregardsBMI in COPD			
group77			
Table (22): Comparison between type of smoking and			
audiometry results in low and high			
frequencies 77			

Table	(23): comparison between type of smoking	and
	tympanometry results	78
Table	(24): Correlation of audiogram low and have frequency with age, FEV1/FVC, FE exacerbations and PO2	V1,
Table	(25): comparison between tympanometry res	
	as regards age, FEV1/FVC, FE	V1,
	exacerbations and PO2 on RA	83

List of Figures

Figure No.	Title	Page No.
	Review	
Figure (I): Cells and of COPD.		d in the Pathogenesis10
Figure (II): showing	anatomy of the Audi	tory system22
Figure (III): show mechanic		of hearing showing
Figure (IV): showing	g inner ear anatomy	28
Figure (V): audiogram	<u> </u>	shold in decibels and38
Figure (VI): show 5 the mide		ams ,the movement of essure varied40
Figure (VII): show d	ifferent types of ABI	R responses42
Figure (VIII): Viasys	sflowscreen spiromet	ter50
Figure (IX): clinical	audiometer	54

Results

Figure (1): shows smoking status of studied patients61
Figure (2): Severity of COPD among the studied patients62
Figure (3): comparison between audiometry results in control group and COPD patient group
Figure (4): comparison of audiogram results between control group and COPD patients group69
Figure (5): show the specificity and sensitivity of audiogram results in COPD patients group
Figure (6):Relation between smoking status and demographic data
Figure(7): correlation between FEV ₁ and low frequency audiogram results
Figure (8): show correlation between low frequency audiogram and PO ₂ on RA
Figure (9): correlation between exacerbation / year and low frequency audiogram results
Figure(10): correlation between high frequency audiogram and FEV

Figure (11): correlation between high frequency	audiometry
and PO ₂ on RA	82
Figure (12): correlation between exacerbation / ye frequency audiogram	C
Figure (13): shows correlation between tympanon	netry results
and FEV1, exacerbations and PO2	84

INTRODUCTION

COPD is a common preventable and treatable disease, is characterized by persistent airflow limitation that is usually progressive and associated with an enhanced chronic inflammatory response in the airway and lung to noxious particles or gases Worldwide, the most commonly encountered risk factor for COPD is tobacco smoking (*GOLD*, 2015).

Cigarette smoking has become a common tendency worldwide. In general, tobacco is consumed by approximately 1.3 billion of the world's population (*Shafey et al.*, 2003).

Many of the health effects of smoking depend on the exposure history, which includes the age at which the smoking began, the number of cigarettes which were smoked per day, the degree of inhalation, and the cigarette characteristics such as the tar and the nicotine content (*Peto*, 1986).

Smoking has been associated with its effect on the senses, which includes the sense of hearing (*Cruickshankset al.*, 2003).

AIM OF THE WORK

This study is designed for the audiological assessment of patients with COPD in an attempt to investigate the effect of smoking on hearing, to characterize the type of hearing loss found in those patients, and to further correlate the hearing loss found with the COPD disease severity.

CHRONIC OBSTRUCTIVE PULMONARY DISEASE

Definition

Chronic Obstructive Pulmonary Disease (COPD), a common preventable and treatable disease, is characterized by persistent airflow limitation that is usually progressive and associated with an enhanced chronic inflammatory response in the airways and the lung to noxious particles or gases. Exacerbations and comorbidities contribute to the overall severity in individual patients. The chronic airflow limitation characteristic of COPD is caused by a mixture of small airways disease (obstructive bronchiolitis) and parenchymal destruction (emphysema), the relative contributions of which vary from person to person (*GOLD*, 2015).

COPD, the fourth leading cause of death in the world, represents an important public health challenge that is both preventable and treatable. COPD is a major cause of chronic morbidity and mortality throughout the world; many people suffer from this disease for years and die prematurely from it or its complications. Globally, the COPD burden is projected to increase in the coming decades because of continuous exposure to COPD risk factors and aging of the population (GOLD, 2015).