ROLE OF MRI BI-RADS IN PREDICTING BREAST MALIGNANCY

Essay

Submitted for Partial Fulfillment of M.Sc. Degree in Radiodiagnosis

By

Noha Alaaeldin Farouk Elsayed Aboueldahab (M.B.B.Ch)

Supervised by

Dr. Maha Mohammad Abdelraof

Professor of Radiodiagnosis
Faculty of Medicine – Ain Shams University

Dr. Khaled Ahmed Mohammed Ali

Lecturer of Radiodiagnosis
Faculty of Medicine – Ain Shams University

Faculty of Medicine

Ain Shams University

2015

Acknowledgment

Praise be to **ALLAH**, The Merciful, The Compassionate for all the gifts **I** have been offered; One of the gifts is accomplishing this research work.

I wish to express my sincere gratitude to *Dr. Maha Mohammad Abdelraof*, Professor of Radiodiagnosis, Faculty of Medicine – Ain Shams University, for her kind approval to register this work, her guidance, encouragement and unlimited support throughout this study. I really have the honor to complete this work under her supervision.

I am very thankful to *Dr. Khaled Ahmed Mohammed Ali,* Lecturer of Radiodiagnosis, Faculty of Medicine – Ain Shams University, for his sincere guidance, valuable remarks and continuous help also for his great efforts and time he has devoted to accomplish this work.

Last but not least all thanks to my Family, especially my Parents, my Husband, for pushing me forward in every step in my life.

Noha Alaaeldin Farouk Elsayed Aboueldahab

List of Contents

Subject Page	e No.
List of Abbreviations	i
List of Tables	iii
List of Figures	iv
Introduction	1
Aim of the Work	4
Chapter (1): Anatomy of the Breast	5
Chapter (2): Pathology of Breast Cancer	22
Chapter (3): MRI Protocol, BI-RADS and Image Evaluation of Different Breast Lesions.	43
Chapter (4): MRI Appearance of Breast Malignancy	y 76
Summary and Conclusion	87
References	89
Arabic Summary	

List of Abbreviations

ACC : Adenoid cystic Carcinoma

ACR : American College of Radiology

ACS : American Cancer Society

ADC : Apparent diffusion coefficient

BI-RADS: Breast Imaging and Reporting Data Systems

BMI : Body mass index

BRCA: Breast cancer

CAD : Computer-aided detection

DCE-MRI: Dynamic contrast-enhanced MRI

DCIS : Ductal carcinoma in situ

DES : Diethylstilbestrol

DNA : Deoxyribonucleic acid

DWI : Diffusion-weighted imaging

FLASH : Fast low-angle shot pulse sequence

FOV : Field of vision

FSPGR: Fast spoiled gradient recalled echo

GFR : Glomerular filtration rate

IDC : Invasive ductal carcinoma

ILC : Invasive (infiltrating) lobular carcinoma

LCIS : Lobular carcinoma in situ

MIP : Maximum intensity projection

MPR : Multiplanner reformat PG55

MRA : Magnetic resonance angiography

MR-CAD : Computer Aided Detection

MRI : Magnetic resonance imaging

List of Abbreviations (Cont.)

NCI : National Cancer Institute

NMLE : Non-mass like enhancement

NSF : Nephrogenic systemic fibrosis

ROI : Region of interest

STIR : Short time inversion recovery

TDLU: Terminal ductal-lobular unit

TNM: Tumour, Nodes, metastasis

List of Tables

Cable No.	Citle	Page No.

List of Figures

Figure No.	Citle Page No.
Figure (1):	Breast anatomy6
Figure (2):	Anatomical structures of the breast and underlying chest wall
Figure (3):	Classification of the microstructure of the breast
Figure (4):	Blood supply of the breast 10
Figure (5):	Lymphatic drainage of the upper limb and breast
Figure (6):	Breast quadrants
Figure (7):	Axial T1 weighted imaging15
Figure (8):	Axial T2 weighted images of both breasts, glandular tissue appear hypointense and fat appear hyperintense 16
Figure (9):	Sagittal post contrast T1 fat sat showing enhancement of nipple and skin
Figure (10):	T1 fat sat post contrast in 1 st week of menstrual cycle showing intense enhancement of breast parenchyma
Figure (11):	MIP showing vasculature of the breast 19
Figure (12):	3D subtraction MIP MRI image showing the axillary lymph nodes as bright enhancement surrounding fatty low-signal hila
Figure (13):	Normal appearance of breast implant 20

List of Figures (Cont.)

Figure No.	Citle Page C	No.
Figure (14):	MRI, T1WI fat sat showing normal male breast there is a small amount of connective tissue behind the nipple	21
Figure (15):	Ductal carcinoma in situ DCIS	31
Figure (16):	Lobular carcinoma in situ (LCIS)	32
Figure (17):	Invasive ductal carcinoma	34
Figure (18):	Invasive lobular carcinoma	35
Figure (19):	Typical breast coil	46
Figure (20):	Invasive ductal carcinoma	. 50
Figure (21):	Contrast-enhanced subtraction image	51
Figure (22):	Enhancement kinetic curves	53
Figure (23):	Maximum intensity projection	54
Figure (24):	CAD colour flow map	. 56
Figure (25):	Proper terminology (according to the BI-RADS lexicon)	59
Figure (26):	Proper terminology (according to the BI-RADS lexicons for lesion enhancement patterns) homogenous, heterogeneous, rim enhancement and enhancement with dark internal septa	61
Figure (27):	A large inflammatory carcinoma with diffuse thickening of the skin	63
Figure (28):	Axial MRI images	63

List of Figures (Cont.)

Figure No.	Citle Page No.
Figure (29):	Diffusion restriction of left sided cancer breast
Figure (30):	Management Strategy for any breast lesion
Figure (31):	A mass on the mammgram at screening, was assigned as BI-RADS 076
Figure (32):	Normal mammographic finding with no mass,no architectural distortion or suspiccious calcification
Figure (33):	Mammography show a well defined dense focal lesion
Figure (34):	Mammorgraphy showing a sharply defined mass with a group of punctate calcification
Figure (35):	Initial short-term follow-up of the lesion at 6 months, then at 12 months 80
Figure (36):	Mammography shows lobulated dense focal lesion
Figure (37):	35-year-old woman who presented with palpable left breast lump
Figure (38):	Low- to intermediate-grade ductal carcinoma in situ (DCIS)
Figure (39):	Mammography showing irregular dense area of the right breast
Figure (40):	Intracystic papillary carcinoma in a 73 year old woman

List of Figures (Cont.)

Figure No.	Citle	Page No.
Figure (41):	Woman with previous breast and small cancer in outer left be dynamic curve type III	preast and
Figure (42):	MR imaging findings suggestreatment residual tumor year-old woman with inflatoreast carcinoma	in a 49- ammatory

Introduction

Preast cancer is the most common invasive cancer in females worldwide. It accounts for 16% of all female cancers and 22.9% of invasive cancers in women. 18.2% of all cancer deaths worldwide, including both males and females, are from breast cancer. According to the National Cancer Institute (NCI), 232,340 female breast cancers and 2,240 male breast cancers are reported in the USA each year, as well as about 39,620 deaths caused by the disease (*Christian*, 2012).

BI-RADS stands for 'breast imaging reporting and data system', and was established by the American College of Radiology. BIRADS is a scheme for putting the findings of mammograms, (for breast cancer diagnosis), into a small number of well-defined categories. Although BIRADS started out only for mammograms, it was later adapted for use with MRI and ultrasound as well (*Razaet al., 2010*).

The Breast Imaging Reporting and Data System (BI-RADS) terminology employed by radiologists to classify breast imaging results is useful in predicting malignancy in breast lesions detected with magnetic resonance imaging (MRI), a recent study demonstrated (*Delicia*, 2012).

The American College of Radiology (ACR) Breast Imaging Reporting and data System (BI-RADS) has undergone revision. The main objectives of the new BI-RADS edition remain the same: to diminish confusion in the interpretation of imaging findings, to standardize reporting, and to simplify outcome monitoring. The overall changes made to the ACR BI-RADS have been designed to give more flexibility for situations where the previous edition of BI-RADS in the past had given much confusion (*Hauthet al.*, 2010).

The new edition of BI-RADS has made changes to its 3 components, the BI-RADS breast imaging lesion, the standardized reporting language, and the medical audit and outcome monitoring. The mammography, ultrasound, and magnetic resonance imaging (MRI) lesions have been made more compatible with each other by using the same descriptors for a lesion across whenever possible all 3 imaging modalities. Also added in this new edition is an increase in number of reference citations, which provides evidence-based justification to the lesion and management recommendations (*Cecilia*, 2014).

Magnetic resonance imaging (MRI) has emerged as a valuable imaging modality for breast cancer detection and staging. The MR imaging finding includes terms used to describe morphologic characteristics of breast lesions (focus, mass, non-mass like enhancement [NMLE]) and kinetic features (initial enhancement, delayed enhancement) and

defines final assessment categories to describe the level of suspicion regarding MR findings. The lesion has been evaluated, and it has been found useful in quantification of the likelihood of carcinoma for mammographic and US abnormalities (*Mary et al.*, 2012).

Dynamic contrast-enhanced MRI (DCE-MRI) is the most sensitive technique for screening high-risk women and for evaluating the extent of disease in patients with a recent diagnosis of breast cancer. Despite its numerous advantages, the moderate specificity of DCE-MRI can result in a substantial number of false positive findings that translate to high recall rates and unnecessary biopsies. Incorporating diffusion-weighted imaging (DWI) into conventional breast MRI examinations has strong potential to specificity. Apparent diffusion coefficient (ADC) measures for breast carcinomas is significantly lower than for benign breast lesions or normal tissue. Furthermore, recent studies have shown improvements in breast MRI accuracy achieved through a combination of DWI and DCE-MRI features, and have identified potential ADC thresholds for differentiating benign from malignant lesions (Sana and Savannah, 2013).

The higher magnetic field strength of 3T provides an improved signal-to-noise ratio and allows for increased spatial and temporal resolution. This should allow for better visualization and characterization of enhancing lesions, which may improve detection of breast cancers (*Ana et al.*, 2014).

Aim of the Work

o evaluate the role of magnetic resonance imaging (MRI) Breast Imaging and Reporting Data Systems (BI-RADS) in predicting breast malignancy.