

Possible modulatory effect of resveratrol on methotrexate efficacy and pharmacokinetics in a model of experimentally induced arthritis

Thesis presented by

Hend Mahmoud Mohamed Rizk

B.Sc, Ain Shams University (2012)
Demonstrator, Department of pharmacology and toxicology, (2013)
Faculty of pharmacy, Ain shams university.

Submitted to complete the fulfillment of MSc degree in Pharmaceutical Sciences (Pharmacology and Toxicology), Faculty of Pharmacy, Ain Shams University.

Under the supervision of

Prof. Dr. Ebtehal El-Demerdash Zaki

Head of Pharmacology and Toxicology Department Faculty of pharmacy, Ain shams university

Dr. Reem Nabil Abou El-Naga

Lecturer of Pharmacology and Toxicology, Faculty of pharmacy, Ain Shams University

Faculty of Pharmacy

Ain Shams University

(2017)

Acknowledgements

First and Foremost, I am greatly thankful to Almighty **ALLAH** for giving me the strength to carry on this work and for blessing me with great people who have been a greatest support along the way. I would like to seize this opportunity to express my sincere gratitude to all those who helped me to complete this work and especially to:

Prof. Dr. Ebtehal El-Demerdash, Head of Pharmacology and Toxicology Department, Faculty of Pharmacy, Ain Shams University, who made this work possible by her great efforts, continuous guidance, support and encouragement throughout the whole stages of this thesis. I am really proud and lucky to have such a passionate supervisor that kept pushing me forward.

Dr. Reem Abou El-Naga, Lecturer at Pharmacology and Toxicology Department, Faculty of Pharmacy, Ain Shams University, for her endless support, guidance, and help. She was there every step of the way dedicating much of her time to help me with any problems I faced. I am really honored to be a student of such an amazing supervisor.

Dr. Maha Nasr, Associate Professor at Pharmaceutics and Industrial Pharmacy Department, Faculty of Pharmacy, Ain Shams University, for her great efforts in the preparation of the nano-emulsion formulation.

Dr. Adel Bakeer Kholoussy, Professor of Pathology, Faculty of Veterinary Medicine, Cairo University, for his great effort in accomplishing the part of histopathological technique.

It is my great pleasure to thank all of my friends and colleagues, the members of Pharmacology and Toxicology Department, Faculty of Pharmacy, Ain Shams University, especially Eman Mantway, Zeina Hussein, Reham Soliman, Nermine El-Agroudy and Sherif Shoeib who supported me and helped me in my way.

Last but not least, I am forever grateful and thankful to my family, my parents, my sisters, my brother and my great friends for their continuous support and prayers and for their faith in my abilities to achieve my goals. I would not be where I am today without all of you.

Hend Rizk

List of contents

Subject	Page
List of abbreviations	I
List of Figures	IV
List of Tables	VI
Review of literature	
1. Rheumatoid arthritis	1
2. Animal models of rheumatoid arthritis	27
3. Methotrexate	30
4. Resveratrol	45
Aim of the work	57
Materials and Methods	
A) Design of the work	
Part I- Screening of the optimum dose of resveratrol for	58
modulation of anti-arthritic effects of methotrexate	
Part II- Studying the underlying mechanisms of the	60
modulatory effect of resveratrol on the anti-arthritic effects	
of methotrexate	
B) Materials	64
C) Methods	68
Results	101
Discussion	158
Summary and Conclusion	171
References	178
Arabic Summary	

List of Abbreviations

ACR	The American College of Rheumatology
AIA	Adjuvant induced arthritis
AICAR	5-aminoimidazole-4-carboxamide ribonucleotide
ANOVA	Analysis of variance
CFA	Complete Freund's adjuvant
CIA	Collagen induced arthritis
COX-2	Cyclooxygenase 2
CVDs	Cardiovascular diseases
DHFR	Dihydro-folate reductase
DMARDs	Disease modifying anti-rheumatic drugs
DMSO	Dimethyl sulfoxide
ELISA	Enzyme-linked immunosorbent assay
FLS	Fibroblast like synoviocytes
GM-CSF	Granulocyte-macrophage colony-stimulating factor
H&E	Hematoxylin and Eosin
HLA-DR	Human Leukocyte Antigen - antigen D Related
IFN- γ	Interferon gamma
Ig	Immunoglobulins

IL	Interleukin
i.p	Intraperitoneal
MMPs	Matrix metalloproteinases
MRI	Magnetic resonance imaging
MTX	Methotrexate
NaOH	Sodium hydroxide
NF-κB	Nuclear factor kappa-light-chain-enhancer of activated B cells
NK	Natural killer
NSAIDs	Non-Steroidal anti-inflammatory drugs
OPG	Osteoprotegerin
PG	Prostaglandins
RA	Rheumatoid arthritis
RANKL	Receptor activator of NF-KB ligand
RF	Rheumatoid factor
RFC_1	Reduced folate carrier 1
RSV	Resveratrol
s.c	Subcutaeneous
SD	Standard deviation
TGF-β	Transforming growth factor beta
Th17	T-helper 17 cells

THF	Tetrahydro-folate
TNF-α	Tumor necrosis factor-alpha
TRAF	TNF receptor-associated factor
VEGF	Vascular endothelial growth factor

List of Tables

No.	Title	Page
Α	Arthritic scoring system	69
В	Gait scoring system	70
1	Effect of methotrexate and resveratrol on arthritic index score in adjuvant arthritic rats	102
2	Effect of methotrexate and resveratrol on gait score in adjuvant arthritic rats	105
3	Effect of methotrexate and resveratrol on ankle diameter in adjuvant arthritic rats	109
4	Effect of methotrexate and resveratrol on hind paw volume in adjuvant arthritic rats	113
5	Histopathological grading	118
6	Effect of methotrexate and resveratrol on arthritic index score in adjuvant arthritic rats	120
7	Effect of methotrexate and resveratrol on gait score in adjuvant arthritic rats	123
8	Effect of methotrexate and resveratrol on ankle diameter in adjuvant arthritic rats	127
9	Effect of methotrexate and resveratrol on hind paw volume in adjuvant arthritic rats	132
10	Effect of methotrexate and resveratrol on paw tissue TNF-α level in adjuvant arthritic rats	136
11	Effect of methotrexate and resveratrol on paw tissue IL-17 level in adjuvant arthritic rats	141
12	Effect of methotrexate and resveratrol on paw tissue RANKL level in adjuvant arthritic rats	146
13	Effect of methotrexate and resveratrol on paw tissue Caspase 3 activity in adjuvant arthritic rats	151
14	Histopathological grading	157

List of Figures

No.	Title	Page
A	Schematic view of the synovial membrane (or	6
	synovium) and its cell types	Ů
В	Pathways leading to activation of synovial T cells in	9
	RA and their key effector pathways	
С	Pathogenesis of RA: synovial and systemic	15
	inflammation	13
D	Positive regulators of osteoclastogenesis and bone	16
<i>D</i>	resorption in RA	10
E	Some folate-dependent enzymes inhibited by MTX	34
L	and MTX polyglutamates	34
F	Structure similarity between dihydrofolate and	36
Γ	methotrexate	30
G	Chemical structures of resveratrol isomers	52
Н	Standard curve of TNF-a	78
Ι	Standard curve of IL-17	85
J	Standard curve of sRANKL	90
K	Standard curve of Caspase 3	96
1	Effect of methotrexate and resveratrol on arthritic	102
1	index score in adjuvant arthritic rats on day 21	103
2	Effect of methotrexate and resveratrol on gait score	106
	in adjuvant arthritic rats on day 21	100
3a	Effect of methotrexate and resveratrol on ankle	110
<i>3a</i>	diameter in adjuvant arthritic rats	110
21.	Effect of methotrexate and resveratrol on ankle	111
<i>3b</i>	diameter in adjuvant arthritic rats on day 21	111
4a	Effect of methotrexate and resveratrol on hind paw	111
44	volume in adjuvant arthritic rats	114
4b	Effect of methotrexate and resveratrol on hind paw	115
	volume in adjuvant arthritic rats on day 21	115
5	Representative photomicrographs of hind paw	117
	sections stained by H&E	117

6	Effect of methotrexate and resveratrol on arthritic index score in adjuvant arthritic rats on day 21	121
7	Effect of methotrexate and resveratrol on the gait score in adjuvant arthritic rats on day 21	124
8a	Effect of methotrexate and resveratrol on ankle diameter in adjuvant arthritic rats	128
8b	Effect of methotrexate and resveratrol on ankle diameter in adjuvant arthritic rats on day 21	129
9a	Effect of methotrexate and resveratrol on hind paw volume in adjuvant arthritic rats	133
9b	Effect of methotrexate and resveratrol on hind paw volumes in adjuvant arthritic rats on day 21	134
10	Effect of methotrexate and resveratrol on paw tissue TNF-α level in adjuvant arthritic rats	137
11	Expression of NF-кВ in hind paw sections by immunohistochemical staining	139
12	Effect of methotrexate and resveratrol on paw tissue IL-17 level in adjuvant arthritic rats	142
13	Expression of COX-2 in hind paw sections by immunohistochemical staining	144
14	Effect of methotrexate and resveratrol on paw tissue RANKL level in adjuvant arthritic rats	147
15	Expression of MMP-9 in hind paw sections by immunohistochemical staining	149
16	Effect of methotrexate and resveratrol on paw tissue Caspase 3 activity in adjuvant arthritic rats	152
17	Expression of cyt c in hind paw sections by immunohistochemical staining	154
18	Representative photomicrographs of hind paw sections stained by H&E	156

Abstract

Background: Low dose methotrexate is the cornerstone of rheumatoid arthritis treatment. However, it is seldom used alone and almost usually combined with other anti-rheumatic agents which increases the risk of toxicity. **Objective:** The present study aimed to investigate the modulatory effect of resveratrol on the efficacy of methotrexate, in addition to elucidating the possible mechanisms for this modulatory effect, and also testing the effect of nano-encapsulation of resveratrol on improving this modulatory effect. **Methods:** Complete Freund's adjuvant was used to induce arthritis. Arthritic rats were treated with methotrexate and resveratrol (solution)/resveratrol nano-emulsion. Arthritic score, gait score, ankle diameter, paw volume and histopathology were determined to assess the anti-arthritic effects. Tissue TNF-α, IL-17 levels, and COX-2 activity were evaluated to study the anti-inflammatory effect. While tissue RANKL, and MMP-9 levels were measured to study the effect on bone and cartilage erosion. Finally, tissue caspase-3 activity and cytochrome c level were evaluated to study the effect on apoptosis. Results: Combination therapy of resveratrol (50 mg/kg) with methotrexate significantly improved arthritic parameters as compared to methotrexate alone. It also alleviated adjuvant induced inflammation, bone/ cartilage erosion, synovial proliferation, and pannus formation. Moreover, using resveratrol in nano-emulsion form gave the same modulatory effect when given at half the dose administered of the conventional formula. **Conclusion:** resveratrol potentiates the anti-arthritic effects of methotrexate, possibly by acting as anti-inflammatory, and proapoptotic. Furthermore, resveratrol nano-encapsulation further improves the modulatory effect of resveratrol on methotrexate efficacy.

Keywords: Resveratrol - Methotrexate - Adjuvant arthritis - nanoemulsion.

Review of Literature

1. Rheumatoid Arthritis

1.1. Background:

Rheumatoid arthritis (RA), is a chronic autoimmune inflammatory disorder which affects the joints and is associated with swelling, stiffness, and pain (**Fishman and Bar-Yehuda**, **2010**). It is usually also accompanied by variable extra-articular manifestations (**Grasasi et al.**, **1998**).

There are skeletal remains from North America indicating that the disease existed at least 3000 years ago, and it was given its name by Alfred Baring Garrod in 1859 (**Parish**, **1963**). As the causes of RA are still unknown, cures have not been discovered yet as well. All treatments and therapies which are applied so far are intended largely to reduce symptoms and delay the progress of the disease (**Newman**, **1996**).

Rheumatoid arthritis has been regarded by many as an autoimmune disease whereby the body's immune system attacks its own tissues, based upon the findings of auto-reactivity to collagen type II (Tarkowski et al., 1989), and to non-cartilaginous proteins, for example filaggrin or citrullinated peptides (Schellekens et al., 1998a). A further support for the role of autoimmunity in RA is the presence of rheumatoid factors, commonly regarded as autoantibodies against the Fc region of human IgG. They are present in about 80% of RA patients,

although they are not specific for RA, but occur in many inflammatory disorders, and in symptomless arthritic patients as well (Ingegnoli et al., 2013). The clinical appearance of RA differs so much between individual patients, that one sometimes is tempted to believe that the patients do not have the same disease. (Arvidson, 2003).

1.2. Prevalence:

The prevalence of RA is estimated to be about 1% in most European populations, with a lower prevalence reported for people of Asian and African origin. (Mody and Cardiel, 2008). Prevalence data for RA are now becoming available for many of the developing countries around the world, reporting a prevalence in urban settings that ranges from 0.1% in Algeria (Slimani and Ladjouze-Rezig, 2014), 0.6% in the DRC (Malemba et al., 2012), to an overall prevalence of 2.5% in South Africa (Solomon et al., 1975), and in rural settings that ranges from an overall prevalence of 0.07% in South Africa (Beighton et al., 1975), 0.3% in Egypt (Usenbo et al., 2015), to 0.4% in Lesotho (Moolenburgh et al., 1986).

Females are found to be three times more affected than males (Anderson et al., 2004). Clinically, RA is more prevalent in women before age 50 but is more severe in women after 50 (Straub, 2007). However some small studies from Nigeria, Liberia, and South Africa showed a high male to female ratio that was inconsistent with global findings (Usenbo et al., 2015).