

Ain Shams University, Women's College for Arts, Science and Education, Cairo- Egypt.

Study the Influence of Chloride and Sulphate Ions on The Hydration Characteristics of Various Blended Cement Pastes Containing Nano Metakaolin

A Thesis

Submitted to the Chemistry Department, Women's College, Ain Shams University In Partial Fulfillment of the Requirements for The Degree of M. Sc. in Chemistry.

Presented by Sara Helall Abd allah Helall

(B.Sc. 2011/2012)

Supervisors

Ass. Prof. Dr/ Doaa A. Ahmed

Assistant Prof. of Inorganic Chemistry Women's College, Ain Shams University, Cairo-Egypt

Ass. Prof. Dr/ Maha R. Mohamed

Assistant Prof. of Inorganic Chemistry Women's College, Ain Shams University, Cairo- Egypt

Dr. Sheren M. Ragai

Lecturer of Physical Chemistry Women's College, Ain Shams University, Cairo- Egypt

(2016)

سورة طه (۱۱٤)

Study the Influence of Chloride and Sulphate ions on the Hydration Characteristics of various Blended Cement pastes containing Nano Metakaolin

THESIS ADVISORS

APPROVED

Ass. Prof. Dr/ Doaa A. AhmedAssistant Prof. of Inorganic Chemistry

Ass. Prof. Dr/ Maha R. Mohamed Assistant Prof. of Inorganic Chemistry

Dr. Sheren RagaayLecturer of Physical Chemistry

Head of Chemistry Department

Prof. Dr./ Mansoura Ismail

Ain Shams University, Women's College for Arts, Science and Education, Cairo- Egypt.

Student Name : Sara Helall Abd Allah Helall

Scientific Degree : B. Sc. (Chemistry)

Department : Chemistry

Name of Faculty : Faculty of Women

University : Ain Shams University

B. Sc. Graduation Date: 2011/2012

ACKNOWLEGMENT

Praise and Thanks be to **ALLAH**, the most merciful for assisting and directing me the right way.

I would like to submit my gratitude, sincere thanks and appreciation to **Ass. Prof. Dr/ Doaa A. Ahmed,** Assistant Prof. of Inorganic Chemistry, Women's College, Ain Shams University, for suggesting the subject of this work, useful guidance, kind help, continuous interest, and fruitful discussion, which have facilitated the interpretation of the data throughout the chapters of this study as well as preparation the thesis in its final form.

I would like to express my deepest thanks to **Ass. Prof. Dr/** *Maha R. Mohamed*, Assistant Prof. of Inorganic Chemistry,
Women's College, Ain Shams University, for her kind help,
talented supervision and criticism, useful directions, valuable
and fruitful discussion during all the steps of the study.

My deepest gratitude and appreciation to *Dr. Sheren Ragaay*, Lecturer of Physical Chemistry, Women's College, Ain Shams University, for her deep concern in this work, brilliance and effort in guiding and continuous help throughout the whole work.

Thanks are also to all members of the Chemistry Department, Women's College, Ain Shams University, for their help.

TO MY FAMILY

I AM Very Greatful
To All Of Them
For Their Support,
Kindness
And Love.

NOTE

Beside the work done in this thesis, the candidate has attended post- graduate courses for one year in inorganic and analytical chemistry including the following topics:

-	Instrumental Analysis	(CHEM 601)
-	Advanced Coordination Chemistry	(CHEM 631)
-	Radiation Chemistry	(CHEM 632)
-	Writing scientific research	(SCR 610)
-	Spectroscopy	(CHEM 630)
-	Ethics of Scientific Research	(SCR 620)
-	Structural inorganic Chemistry	(CHEM 636)
-	Advanced reaction mechanism	(CHEM 634)

She has successfully passed written examinations in the above mentioned topics.

Head of Chemistry Department

CONTENTS

Title	Page
Acknowledgment	
List of Tables	iv
List of Figures	vi
Abstract	xii
CHAPTER I	
Introduction, Literature Survey and Aim of the	work
I. A. Introduction	
I.A.1. Cement and admixtures	1
I.A.2. Ordinary Portland cement (OPC)	1
I.A.3. Manufacture of OPC	2
I.A.4. Mineralogical composition of OPC	2
I. A. 5. Properties and Hydration of the major	3
constituents of OPC	
I.A.6. Types of Portland cement	5
I. A. 7. Factors affecting the rate of hydration	7
I.A.8. Blended cement	10
I.A.9. Characteristic and advantages of some	11
industrial pozzolanas	
I.A.9. 1. Clay "Meta-kaolinite and nano	11
metakaolin"	
I.A.9. 2. Cement kiln dust	12
I.A.9. 3. Silica fume	13
I.B. Literature Survey	
I.B.1. Effect of different additives on the	15
characteristics of OPC pastes.	
I.B. 1.1. Effect of NMK	15

I.B. 1. 2. Effect of CKD	17
I.B. 1. 3. Effect of SF	21
I.B.2. Sulphate attack on hardened cement	25
pastes	
I.B.3. Chloride attack on hardened cement	37
pastes	
I.C. Aim of the work	42
CHAPTER II	
II. Materials and Experimental Techniques	
II. A. Materials	43
II. B. Experimental Techniques	45
II. B. 1. Sample preparation	45
II. B. 2. Stopping of hydration	46
II. C. Apparatus, Techniques and	48
Instrumentation	
II. C. 1. Compressive Strength	48
II. C. 2. Chemically combined water	48
content (Wn %)	
II. C. 3. X-Ray Diffraction Analysis	49
(XRD)	
II.C.4.Spectral measurements	49
(IR)	
CHAPTER III	
III- Results and Discussion	
III.A.Hydration Characteristics for Mixes	50
Containing Nanometakaolin	
III. A. 1. Combined Water Content (Wn%)	50
III. A.2. Compressive Strength	54

III.1.3. Phase Composition	61
III. B.Mixes Containing NMK and CKD	83
III.B.1.Combined Water Content	85
III.B.2. Compressive Strength	87
III.B.3. Phase Composition	92
III.C. Mixes Containing NMK and SF	107
III.C.1. Combined Water Content	107
III.C.2. Compressive Strength	112
III.C.3. Phase Composition	116
III.D. Infrared Spectroscopy (IR)	131
CHAPTER (IV)	
Summary and Conclusions	
Summary and Conclusion	134
References	142
Arabic Summary	-

List of Tables

Table No.	Title of Table	Page
Table (1)	Chemical composition of the used materials.	44
Table (2)	The mineralogical composition of the used Portland cement.	45
Table (3)	The composition and designation of the prepared mixes.	47
Table (4)	Combined water content at different hydration of Mo and the mixes blended with NMK cured in water.	51
Table (5)	Combined water content at different hydration ages of cement mixes containing NMK cured in 5% MgSO ₄ solution.	52
Table (6)	Combined water content at different hydration ages of mixes containing NMK cured in 3.5 %NaCl solution .	53
Table (7)	Compressive strength values of the control mix and mixes containing NMK cured in water at different hydration ages.	56
Table (8)	Compressive strength values of the control mix and the mixes containing NMK cured in 5% MgSO ₄ solution at different hydration ages.	58
Table (9)	Compressive strength values of the control mix and the mixes containing NMK cured in 3.5% NaCl solution at different hydration ages.	60
Table (10)	Combined water content of mixes containing NMK and CKD cured in water at different hydration ages	84
Table (11)	Combined water content of mixes containing NMK and CKD cured in 5% MgSO ₄ solution at different hydration ages	85
Table (12)	Combined water content of mixes containing NMK and CKD cured in 3.5% NaCl solution at different hydration ages	86

Table No.	Title of Table	Page
Table (13)	Compressive strength values of the control mix and mixes containing NMK and CKD cured in water at different hydration ages	88
Table (14)	Compressive strength values of the control mix and the mixes containing NMK and CKD cured in 5% MgSO ₄ solution at different hydration ages.	90
Table (15)	Compressive strength values of the control mix and the mixes containing NMK and CKD cured in 3.5% NaCl solution at different hydration ages .	91
Table (16)	Combined water content of mixes containing NMK and SF cured in water at different hydration ages	109
Table (17)	Combined water content of mixes containing NMK and SF cured in 5 % MgSO ₄ solution at different hydration ages	110
Table (18)	Combined water content of mixes containing NMK and SF cured in 3.5 % NaCl solution at different hydration ages	111
Table (19)	Compressive strength values of the mixes containing NMK and SF cured in water at different hydration time	113
Table (20)	Compressive strength values of the control mix and the mixes containing NMK and SF cured in 5 % MgSO ₄ solution at different hydration ages	114
Table (21)	Compressive strength values of the control mix and the mixes containing NMK and SF cured in 3.5% NaCl solution at different hydration ages	115

List of Figures

Figure No.	Title of Figure	Page
Figure (1)	Combined water content of Mo and the mixes blended with with different ratio of NMK only cured in water at different hydration ages	52
Figure (2)	Combined water content of mixes containing with different ratio of NMK cured in 5% MgSO ₄ solution at different hydration ages	53
Figure (3)	Combined water content of mixes containing NMK cured in 3.5% NaCl solution at different hydration ages	54
Figure (4)	Compressive strength of the control mix and the mixes containing NMK cured in water versuse hydration time	56
Figure (5)	Compressive strength values of the control mix and the mixes containing NMK cured in 5% MgSO ₄ solution	58
Figure (6)	Compressive strength values of the control mix and the mixes containing NMK cured in 3.5% NaCl solution	60
Figure (7)	X-ray diffraction patterns of the control mix MoA cured in water.	63
Figure (8)	X-ray diffraction patterns of mix M ₁ A (OPC + 2% NMK) cured in water.	64
Figure (9)	X-ray diffraction patterns of mix M_2A (OPC + 4% NMK) cured in water.	65
Figure (10)	X-ray diffraction patterns of mix M_3A (OPC+ 6% NMK) cured in water.	66
Figure (11)	X-ray diffraction patterns of mix M ₄ A (OPC+ 8% NMK) cured in water.	67
Figure (12)	X-ray diffraction patterns of mix M ₅ A (OPC +10%NMK) cured in water.	68
Figure (13)	X-ray diffraction patterns of the control mix M _o B cured in 5% MgSO ₄ solution.	70

Figure No.	Title of Figure	Page
Figure (14)	X-ray diffraction patterns of mix M ₁ B (OPC + 2% NMK) cured in 5% MgSO ₄ solution.	71
Figure (15)	X-ray diffraction patterns of the mix M ₂ B (OPC + 4% NMK) cured in 5% MgSO ₄ solution.	72
Figure (16)	X-ray diffraction patterns of the mix M ₃ B (OPC + 6% NMK) cured in 5% MgSO ₄ solution.	73
Figure (17)	X-ray diffraction patterns of the mix M ₄ B (OPC + 8% NMK) cured in 5% MgSO ₄ solution.	74
Figure (18)	X-ray diffraction patterns of the mix M ₅ B (OPC + 10% NMK) cured in 5% MgSO ₄ solution.	75
Figure (19)	X-ray diffraction patterns of the control mix M_o C cured in 3.5 % NaCl solution.	77
Figure (20)	X-ray diffraction patterns of the mix M ₁ C (OPC + 2% NMK) cured in 3.5 % NaCl solution.	78
Figure (21)	X-ray diffraction patterns of the mix M ₂ C (OPC + 4% NMK) cured in 3.5 % NaCl solution.	79
Figure (22)	X-ray diffraction patterns of the mix M ₃ C (OPC + 6% NMK) cured in 3.5 % NaCl solution.	80
Figure (23)	X-ray diffraction patterns of the mix M ₄ C (OPC + 8% NMK) cured in 3.5 % NaCl solution.	81
Figure (24)	X-ray diffraction patterns of the mix M_5C (OPC + 10% NMK) cured in 3.5 % NaCl.	82
Figure (25)	Combined water content of the mixes blended with NMK and CKD at different hydration ages.	84
Figure (26)	Combined water content of mixes containing NMK and CKD cured in 5% MgSO ₄ solution at different hydration ages.	85
Figure (27)	Combined water content of cement mixes containing NMK and CKD cured in 3.5% NaCl solution at different hydration ages.	86
Figure (28)	Compressive strength of the control mix and the mixes containing NMK, CKD cured in water.	88
Figure (29)	Compressive strength values of the control mix and the mixes containing NMK and CKD cured in 5%MgSO ₄ solution.	90

Figure No.	Title of Figure	Page
Figure (30)	Compressive strength values of the control mix and the mixes containing NMK and CKD cured in 3.5 % NaCl solution.	91
Figure (31)	X-ray diffraction patterns of mix M_6A (OPC+2% NMK+ 8% CKD) cured in water.	93
Figure (32)	X-ray diffraction patterns of mix M ₇ A (OPC+ 4% NMK + 6% CKD) cured in water.	94
Figure (33)	X-ray diffraction patterns of mix M ₈ A (OPC+ 6% NMK + 4% CKD) cured in water.	95
Figure (34)	X-ray diffraction patterns of mix M ₉ A (OPC+ 8% NMK +2% CKD) cured in water.	96
Figure (35)	X-ray diffraction patterns of the mix M_6B (OPC+2% NMK + 8% CKD) cured in 5% MgSO ₄ solution.	98
Figure (36)	X-ray diffraction patterns of the mix M ₇ B (OPC + 4% NMK + 6% CKD) cured in 5% MgSO ₄ solution.	99
Figure (37)	X-ray diffraction patterns of the mix M ₈ B (OPC + 6% NMK + 4% CKD) cured in 5% MgSO ₄ solution.	100
Figure (38)	X-ray diffraction patterns of the mix M ₉ B (OPC + 8% NMK + 2% CKD) cured in 5% MgSO ₄ solution.	101
Figure (39)	X-ray diffraction patterns of the mix M ₆ C (OPC + 2% NMK + 8% CKD) cured in 3.5% NaCl solution.	103
Figure (40)	X-ray diffraction patterns of the mix M_7C (OPC + 4% NMK + 6% CKD) cured in 3.5% NaCl solution.	104
Figure (41)	X-ray diffraction patterns of the mix M_8C (OPC + 6% NMK + 4% CKD) cured in 3.5% NaCl solution.	105