

Kinetics and Mechanism of Hydration between Active Silica and Lime-bearing Products

A Thesis Submitted in Partial Fulfillment for the Requirements of the Degree of Master of Science in Chemistry

Submitted by

Doaa Mohammed Sayed Ibrahem

B. Sc., Chemistry-Physics, Faculty of Science Ain Shams University, 2001

Supervised by

Prof. Dr./ Salah A. Abo-El-Enein

Prof. of Physical Chemistry and Building Materials, Faculty of Science, Ain Shams University

Prof. Dr./ Mohammed F. El-Shahat

Prof. of Inorganic Chemistry, Faculty of Science, Ain Shams University

Cairo - 2010

Ain Shams University Faculty of Science Chemistry Department

Kinetics and Mechanism of Hydration between Active Silica and Lime-bearing Products

Thesis Advisors	Approved
Prof. Dr. / Salah A. Abo-El-Enein	•••••
Prof. Dr. / Mohammed F. El-Shahat	•••••
Head of Chemistry Department	

Prof. Dr. Fakhry A. El-Bassiouny

Cairo - 2010

PCKNOWLEDGEMEN>

Praise and thanks be to **ALLAH** for giving me the opportunity and the strength to accomplish this work.

I wish to express my deepest gratitude to **Prof. Dr. Salah A. Abo El- Enein,** professor of Physical Chemistry and Building Materials, Faculty of Science, Ain Shams University and **Prof. Dr. Mohammed F. El-Shahat,** professor of Inorganic Chemistry, Faculty of Science, Ain Shams University, for planning the work, keen, supervision, with valuable guidance and discussion during the course of this investigation.

Abstract

The short- and long- term mechanical properties of high-performance concrete could be improved by the incorporation of different levels of rice-husk-ash (RHA) or silica fume (SF). The improvement was based on the pozzolanic interaction of RHA with the free calcium hydroxide liberated from Portland cement hydration leading to the formation of additional amounts calcium silicate hydrates (CSH) which have a strong hydraulic (strength-producing) character. Therefore, the main characteristics of hydration interaction between lime-rich sludge (LRS) and rice-husk-ash (RHA) were investigated in this study. Three LRS/RHA mixes (I, II and III) were used, having CaO/SiO₂ molar ratios of 1.0, 1.3 and 1.5.

The results obtained indicated that the main hydration products during the early and intermediate stages are lime- rich CSH; these hydrates undergo transformation into low- lime hydrates in mixes I & II which have relatively low CaO/SiO₂ molar ratios (1&1.3). While in mix III, which has a higher CaO/SiO₂ molar ratio (1.5), the lime-rich CSH represent the main hydration products at all ages of hydration up to 28 days. It was found that the hydration mechanism between RHA and LRS consists of three main stages; these are: pre-dormant stage, dormant stage and acceleration stage.

LIST OF APPREVIATIONS

(LRS): Lime Rich Sludge

(RHA): Rice Husk Ash

(FA): Fly Ash

(SF): Silica Fume

(C-S-H): Calcium Silicate Hydrate

(OPC): Ordinary Portland Cement

(DSC): Differential Scanning Calorimetry

(XRD): X-Ray Diffraction

(HPC): High Performance Concrete

(BFS): Blast Furnace Slag

CONTENTS

Subject	Page No.
• Chapter I:	
Introduction and Object of Investigation	1
I.A. Introduction	1
I.B. Object of Investigation	26
• Chapter II:	
Materials and Methods of Investigation	27
II.A. Materials and Mix Composition	27
II.A.1. Starting materials	27
II.A.2. Preparation of mixtures	28
II.B. Methods of Investigation	29
II.B.1. Hydration Kinetics	29
a. Determination of non-evaporable	
chemically-combined) water content	29
b. Determination of the free lime content.	30
c. Determination of the free silica content	31
II.B.2. Differential scanning calorimetry (I	OSC)31
II.B.3. X-ray diffraction analysis	32
• Chapter III:	
Results and Discussion	34
III.A. Hydration Kinetics and Mechanism	35

CONTENTS

Subject	Page No.
III.A.1. Kinetics and mechanism of hydration of Min	x I35
III.A.2. Kinetics and mechanism of hydration of Min	x II42
III.A.3. Kinetics and mechanism of hydration of Min	x III49
III.B. Phase Composition of the Formed Hydrate	s57
III.B.1. Differential scanning calorimetry	57
III.B.2. X-ray diffraction analysis	69
• Chapter IV:	
Summary and Conclusion	81
• References	84
Arabic Summery	

LIST OF TABLES

Table N	0.	Title		Page No.
Table (1		oxide composit		ing 28
Table (2	(LRS)–ri	ce husk ash (R	tHA) blend	ne rich sludge of Mix I in the atio=1) 38
Table (H ₂ O/SiO hydrated	LRS-RHA	with age of	O_2 (C/S) and of hydration for Mix I in the $O_2=1$)
Table ((LRS) -ric	e husk ash (RI	HA) blend	ne rich sludge of Mix II in the atio=1.3)45

LIST OF TABLES

Table N	0.	,	Title		P	age N	lo.
Table (5	H ₂ C	ation of to NSiO2 (H/S) rated LRS pension form) ratios w -RHA bl	vith age of	of hyd Mix	ration II in	for the
Table (6)	-rice susp	tion charace husk ash pension p=1.5)	(RHA) form	blend of (molar	Mix	III in CaO/S	the SiO ₂
Table (7	H ₂ O/hydra	ion of the SiO ₂ (H/S) ated LRS-lension form	ratios w	rith age o	of hyd Mix II	ration II in	for the

Figure No.	Title	Page No.
	Variation of combined water (W _n *, % (CaO, %) and free silica (SiO ₂ , %) cage of hydration in the suspension for RHA blend of Mix I (molar	6), free lime ontents with rm for LRS-
Figure (2)	ratio=1) Variation of the molar CaO/SiO ₂ H ₂ O/SiO ₂ (H/S) ratios of the form silicate hydrates with age of hydr suspension form for LRS-RHA ble (molar CaO/SiO ₂ ratio=1)	c (C/S) and ned calcium ation in the nd of Mix l
Figure (3):	Variation of combined water (W*n, 9 (CaO, %) and free silica (SiO ₂ , %) cage of hydration in the suspension for RHA blend of Mix II (molar ratio=1.3)	ontents with rm for LRS- CaO/ SiO ₂

Figure No.	Title	Page No.
Figure (4):	Variation of the molar CaO/SiO	(C/S) and
	H ₂ O/SiO ₂ (H/S) ratios of the form	ned calcium
	silicate hydrates with age of hydr	ration in the
	suspension form for LRS-RHA ble	nd of Mix II
	(molar CaO/SiO ₂ ratio=1.3)	48
Figure (5):	Variation of combined water (W*n, 9	%), free lime
	(CaO, %) and free silica (SiO ₂ , %) of	ontents with
	age of hydration in the suspension fo	rm for LRS-
	RHA blend of Mix III (molar	CaO/ SiO ₂
	ratio=1.5)	54
Figure (6):	Variation of the molar CaO/SiO	(C/S) and
	H ₂ O/SiO ₂ (H/S) ratios of the form	ned calcium
	silicate hydrates with age of hydr	ation in the
	suspension form for LRS-RHA bler	nd of Mix III
	(molar CaO/SiO ₂ ratio=1.5)	56

Figure No.	Title	Page No.
Figure (7):	DSC thermograms of hydrated LRS-I	RHA sample
	after 0.5 hour of hydration in the susp	ension form
	(Mix I: molar CaO/ SiO ₂ ratio=1)	61
Figure (8):	DSC thermograms of hydrated LRS-I	RHA sample
	after 6 hours of hydration in the susp	ension form
	(Mix I: molar CaO/ SiO ₂ ratio=1)	62
Figure (9):	DSC thermograms of hydrated LRS-I	RHA sample
	after 3 days of hydration in the susp	ension form
	(Mix I: molar CaO/ SiO ₂ ratio=1)	63
Figure (10)	: DSC thermograms of hydrated LRS-	RHA sample
	after 28 days of hydration in the susp	ension form
	(Mix I: molar CaO/ SiO ₂ ratio=1)	64
Figure (11)	: DSC thermograms of hydrated LRS-	RHA sample
	after 0.5 hour of hydration in the	suspension
	form (Mix III: molar CaO/ SiO ₂ ratio	=1.5)65

Figure No.	Title	Page No.
Figure (12):	DSC thermograms of hydrated LRS-	RHA sample
	after 6 hours of hydration in the sus	pension form
	(Mix III: molar CaO/ SiO ₂ ratio=1.5))66
Figure (13):	DSC thermograms of hydrated LRS-	RHA sample
	after 3 days of hydration in the susp	pension form
	(Mix III: molar CaO/ SiO ₂ ratio=1.5))67
Figure (14) :	DSC thermograms of hydrated LRS-	RHA sample
	after 28 days of hydration in the sus	pension form
	(Mix III: molar CaO/ SiO ₂ ratio=1.5).	68
Figure (15)	: XRD-diffractograms of hydrated	1 LRS-RHA
	sample after 0.5 hour of hydra	ation in the
	suspension form (Mix I: molar	CaO/ SiO ₂
	ratio=1)	71
Figure(16):	XRD-diffractograms of hydrated	LRS-RHA
	sample after 6 hours of hydra	ation in the
	suspension form (Mix I: molar	CaO/ SiO ₂
	ratio=1)	72

Figure No.	Title	Page No.
Figure(17):	XRD-diffractograms of hydrated sample after 3 days of hydratic suspension form (Mix I: molar ratio=1).	on in the
Figure(18):	XRD-diffractograms of hydrated sample after 28 days of hydratic suspension form (Mix I: molar ratio=1).	ion in the
Figure (19)	xRD-diffractograms of hydrated sample after (0.5, 6 hours, 3and 2 hydration in the suspension form (Nacy CaO/SiO ₂ ratio=1.5)	28 days) of Iix I: molar
Figure (20)	xRD-diffractograms of hydrated sample after 0.5 hour of hydrate suspension form (Mix III: molar ratio=1.5)	ion in the

Figure No.		Title	Page No.
Figure	(21):	XRD-diffractograms of hydrated sample after 6 hours of hydrate suspension form (Mix III: molar ratio=1.5)	ion in the
Figure	(22):	XRD-diffractograms of hydrated sample after 3 days of hydratic suspension form (Mix III: molar ratio=1.5)	on in the
Figure	(23):	XRD-diffractograms of hydrated sample after 28 days of hydrate suspension form (Mix III: molar ratio=1.5)	ion in the
Figure(2	:	XRD-diffractograms of hydrated sample after (0.5, 6 hours, 3and 2 hydration in the suspension form (Mi CaO/SiO2ratio=1.5)	8 days) of x III: molar