PHYSIOLOGICAL STUDIES ON BROILER CHICKS UNDER HEAT STRESS CONDITIONS

By

AHMED GOUDA ABD ALLAH ABD ALLAH

B.Sc. Agric. Sc. (Poultry Production), Zagazig University, 2004 M.Sc. Agric.Sc. (Poultry Physiology), Ain Shams University, 2010

A thesis submitted in partial fulfillment of the requirements for the degree of

in
Agricultural Science
(Poultry Physiology)

Department of Poultry Production Faculty of Agriculture Ain Shams University

Approval Sheet

PHYSIOLOGICAL STUDIES ON BROILER CHICKS UNDER HEAT STRESS CONDITIONS

By

AHMED GOUDA ABD ALLAH ABD ALLAH

B.Sc. Agric. Sc. (Poultry Production), Zagazig University, 2004 M.Sc. Agric.Sc. (Poultry Physiology), Ain Shams University, 2010

is thesis for Ph.D. degree has been approved by:	
Dr. Akrum M. M. Hamdy	
Prof. of Poultry Physiology, Faculty of Agriculture, Minia	
University	
Dr. Sayed Ahmed Abdel Fattah	••
Prof. of Poultry Physiology, Faculty of Agriculture, Ain Sha	ams
University	
Dr. Alaa El- Dien Abd El- Salam Hemid	••
Prof. of Poultry Nutrition, Faculty of Agriculture, Ain S	hams
University	
Dr. Ibrahim El-Wardany El- Sayed	
Prof. Emeritus of Poultry Physiology, Faculty of Agriculture	, Air
Shams University	

Date of Examination: 3 / 8 / 2015

PHYSIOLOGICAL STUDIES ON BROILER CHICKS UNDER HEAT STRESS CONDITIONS

By

AHMED GOUDA ABD ALLAH ABD ALLAH

B.Sc. Agric. Sc. (Poultry Production), Zagazig University, 2004 M.Sc. Agric.Sc. (Poultry Physiology), Ain Shams University, 2010

Under the supervision of:

Dr. Ibrahim El- Wardany El- Sayed

Prof. Emeritus of Poultry Physiology, Department of Poultry Production, Faculty of Agriculture, Ain Shams University (Principal Supervisor)

Dr. Alaa El- Dien Abd El- Salam Hemid

Prof. of Poultry Nutrition, Department of Poultry Production, Faculty of Agriculture, Ain Shams University

Dr. Mosaad Mohammed Ali El- Monairy

Research Prof. Emeritus of Poultry Nutrition, Department of Animal Production, National Research Center

ABSTRACT

Ahmed Gouda Abd-Allah Abd-Allah: Physiological Studies On Broiler Chicks Under Heat Stress Conditions. Unpublished Ph.D Thesis, Department of Poultry Production, Faculty of Agriculture, Ain Shams University, 2015.

Two experiments were conducted to evaluate the effect of increasing dietary levels of organic chromium, organic selenium and Vitamin E and their interaction with early heat conditioning as means for alleviating the deleterious impacts of heat stress on broilers.

A total of 120 one day old commercial broiler chicks (Cobb) were used in the first experiment they were divided into four groups with six replications, each of five chicks. The first group was the control group; the other groups were fed the basal diet supplemented with organic Chromium (0.8 mg/kg diet), organic selenium (0.3 mg/kg diet) and vitamin E (200 IU/kg diet) for 2nd, 3rd and 4th groups respectively.

Results showed that increasing dietary levels of organic chromium, organic selenium and Vitamin E especially Vitamin E supplementation could improve the productive performance enhance blood parameters, total antibody titer against to Newcastle disease Virus (NDV), Insulin-like Growth factor -1 (IGF-1), antioxidant status, Heat shock protein 70 (HSP 70) and Carcass characteristics in heat stressed broiler chicks reared during the summer conditions.

The second experiment was conducted to study the possible benefits from the interaction between early age heat conditioning (5 d $40\pm1^{\circ}$ C for 24h) and dietary supplements of the first experiment. A total of 240 one day old commercial broiler chicks (Cobb) were divided into two groups of 120 birds, each group was subdivided into 4 sub-groups of 30 birds, the first sub-group was the control group, the other sub-groups were fed the basal diet supplemented with (200

IU/kg diet vitamin E and 0.8 mg/kg diet organic Chromium), (200 IU/kg diet vitamin E and 0.3 mg/kg diet organic selenium) and (200 IU/kg diet vitamin E, 0.8 mg/kg diet organic Chromium and 0.3 mg/kg diet organic selenium), for 2^{nd} , 3^{rd} and 4^{th} sub-groups respectively. At 5-d of age the first group was exposed to $40\pm1^{\circ}$ C for 24h (**Heat conditioning, HC**) while the second one was maintained under the normal brooding temperature ($32\pm1^{\circ}$ C) (**Non heat conditioning, N.H.C**), At 42-d of age all groups were exposed to $41\pm1^{\circ}$ C for 1h.

Results showed that early age heat conditioning of broiler chicks and dietary supplements with (200 IU/kg diet vitamin E and 0.8 mg/kg diet organic Chromium), (200 IU/kg diet vitamin E and 0.3 mg/kg diet organic selenium) and (200 IU/kg diet vitamin E, 0.8 mg/kg diet organic Chromium and 0.3 mg/kg diet organic selenium) could improve the productive performance enhance blood parameters, total antibody titer against to Newcastle disease Virus (NDV), Insulinlike Growth factor -1 (IGF-1), antioxidant status, heat shock protein 70 (HSP 70) and carcass characteristics in heat stressed broiler chicks reared during the summer conditions.

It is suggested that early age heat conditioning accompanied with (Vit.E, Cr or Se) may be practically effective in enhancing the general performance of broiler chicks under heat stress conditions.

Key words: Broiler, performance, Blood, heat conditioning, Vitamin E, selenium, Chromium, Heat shock proteins and antioxidant status.

ACKNOWLEDGMENTS

First of all, thanks are due to our merciful "ALLAH" for continuous help through out my study and my life.

I would like to express my deep personal gratitude and sincere appreciation to **Prof. Dr. Ibrahim El- Wardany El- Sayed,** Professor of Poultry Physiology, Department of Poultry Production, Faculty of Agriculture, Ain Shams University, for his supervision, suggesting the problem, valuable advices and help in revising the manuscript to be in its final form.

I am extremely grateful to **Prof. Dr. Alaa El- Dien Abd El-Salam Hemid,** Professor of Poultry Nutrition, Department of Poultry Production, Faculty of Agriculture, Ain Shams University, for supervision, providing facilities, valuable advices and kind help during the course of the study.

My deep gratitude is extended to **Prof. Dr. Mosaad Mohammed Ali El- Monairy,** Professor of Poultry Nutrition,

Department of Animal Production, National Research Center, for suggesting the problem, his close and continuous supervision, providing the facilities, revising the manuscript and support during this work.

I wish to express my deepest thanks to **Prof. Dr. Eman Farag El-Daly,** Professor of Poultry Physiology, Department of Animal Production, National Research Center, for her supervision valuable advices, co- operation, encouragement and constant interest throughout this work.

I remain grateful to **Prof. Dr. Ahmed Ragheb Shemeis,** Professor of Animal Breeding, Department of Animal Production, Faculty of Agriculture, Ain Shams University, for his valuable advices and continuous help in the statistical analysis of data.

I would like to express my deep thanks to all the staff members and poultry physiology colleagues in the Department of Poultry Production, Faculty of Agriculture, Ain Shams University, and the Department of Animal Production, National Research Center for their support and kind help.

To the ever-revolving face of the "Poultry Physiology Group in Ain Shams University and Animal Production in National Research Center", it has been a privilege and honor to work beside each of you over the years. I truly appreciate all of the hard work and time that you have put forth to help me with my research. Without you, I would have never got all of this research done. I wish each of you the very best in life.

I would like to express a special word of thanks to my beloved **mother**, my **brothers and sisters**. Words are not enough to express my deepest gratitude for you all, thank you for believing in my abilities, thank you for your concern and love. You are always in my heart, I love you so much.

To my daughter, **Aseel**, thank you for giving me the hope all the time just by looking or playing with you. You brought joy to our life. You are one piece of my heart, I love you.

Finally, I wish to convey my special gratitude to **my wife**, who stood by me through the happiness and tears. I cannot express the depth of my love and appreciation for your faith and belief in me. Your unconditional love and understanding never faltered and was my inspiration as I faced the many challenges involved with this experience.

To each of the above, I extend my deepest appreciation.

Ahmed Gouda Abd-Allah

CONTENTS	Page
LIST OF TABLES	\mathbf{V}
LIST OF FIGURES	VIII
LIST OF ABBREVIATION	IX
INTRODUCTION	1
REVIEW OF LITERATURE	
I. Heat stress and its effect on broiler.	3
1. Effect of Heat stress on broiler performance	3
2. Physiological response to Heat Stress	4
2.1. Blood parameters.	4
2.2. Oxidative stress.	6
2.3. Antioxidant Status.	7
3. Effect of Heat Stress on the Immune Response	8
3.1. Antibody production	10
3.2 Heat shock proteins	11
4. Carcass characteristics and some organs weight.	11
II. Some Strategies to Alleviate Heat Stress in Broilers	12
A. Early age heat conditioning.	12
1. Effect of early age heat conditioning on broiler performance.	12
2. Physiological Effects of early age heat conditioning.	13
3. Immunological Effects of early age heat conditioning.	13
4. Heat shock proteins	14
B. Chromium.	15
1. Effect of chromium on broiler performance	16
2. Physiological Effects of Chromium on broiler	17
3. Effect of chromium on the Immune Response	18
4. Effect of chromium on Carcass characteristics and some	
organs weight.	20

C. Selenium.	21
1. Effect of Selenium on broiler Performance.	22
2. Physiological Effects of Selenium on broiler	
2.1. Blood parameters	25
2.2. Antioxidant status.	25
3. The Immunological Effects of Selenium on broiler	26
4. Heat shock protein.	28
D. Vitamin E.	28
1. Effect of Vitamin E on broiler Performance.	29
2. Physiological Effects of Vitamin E on broiler	
2.1. Blood parameters	32
2.2. Antioxidant Status	33
3. The Immune System response.	33
3.1 Lymphoid organs.	36
4. Heat shock protein.	37
MATERIALS AND METHODS	
Plan of work	
-Birds, Housing and Experimental procedures:	38
Studied traits.	
a- Temperature-Humidity Index (THI).	41
b- Growth performance parameters	43
c- Carcass characteristics and some organs weight	44
d- Physiological Traits.	
- Blood collection and haematological parameters	44
e- Biochemical Parameters:	
- Plasma Total Proteins, Plasma Albumin and Globulin.	45
- Insulin-Like Growth Factors (IGF-1)	45
- Antioxidant Status	45

f- Humoral Immune Response:	
1- Heterophils to Lymphocytes Ratio (H/L ratio)	46
2- Immunization and Titration against Newcastle Disease	
Virus (NDV)	46
3- Measurement of Heat shock proteins	48
- Statistical analysis.	49
RESULTS	
Experiment 1	
1- Productive performance of broiler chicks at different ages	50
2. Blood parameters.	
2.1. Hematological parameters	51
2.2. Plasma total protein (PTP), albumin (A), globulin (G) and	
albumin to globulin ratio (A/G ratio).	52
3- Antioxidant Status	54
4- Antibody production against Newcastle Disease Virus	
(NDV)	55
5- Insulin-like Growth factor -1 (IGF-1)	56
6- Heat shock protein 70 (HSP70)	56
7. Carcass characteristics and weights of some organs	57
Experiment 2	
1- Productive performance of broiler chickens at different	
ages:	
a- Body weight (BW) and body weight gain (BWG).	59
b- Feed intake (FI) and feed conversion ratio (FC ratio).	61
2. Blood parameters.	
2.1. Hematological parameters	63
2.2. Plasma total protein (PTP), albumin (A), globulin (G) and	66
albumin to globulin ratio (A/G ratio) of broiler chicks.	
3- Antioxidant status	68

4- Antibody titer against Newcastle Disease Virus (NDV).	69
5- Insulin-like Growth factor –I (IGF-I)	71
6- Heat shock protein 70 (HSP70)	71
7. Carcass characteristics and some organs weight.	72
DISCUSSION	
1- Productive performance of broiler chickens	76
2. Blood parameters.	
2.1. Hematological parameters	77
2.2. Plasma total protein, albumin (A), globulin (G) and	
albumin to globulin ratio (A/G ratio).	79
3- Antioxidant Status	80
4- Antibody production against Newcastle Disease Virus	
(NDV).	83
5- Insulin-like Growth factor -1 (IGF-1)	84
6- Heat shock protein 70 (HSP70)	85
7. Carcass characteristics and weights of some organs	86
SUMMARY AND CONCLUSION	88
REFERENCES	94
ARABIC SUMMARY	

LIST OF TABLES

Table		Page
1	Composition and calculated analysis of the	40
	experimental diets.	
2	Temperature Humidity index ranges and their	41
	corresponding stress categories.	
3	In door maximum and minimum temperature (°F),	
	relative humidity and Temperature Humidity index	42
	in the first Expermint.	
4	In door maximum and minimum temperature (°F),	
	relative humidity and Temperature Humidity index	43
	in the second Expermint.	
5	Effect of dietary supplements by organic	
	chromium, organic selenium and Vitamin E on	51
	productive performance of broiler chicks at	
	different ages	
6	Effect of dietary supplements by organic	53
	chromium, organic selenium and Vitamin E on	
	some Hematological parameters	
7	Effect of dietary supplements by organic	
	chromium, organic selenium and Vitamin E on	54
	Plasma total protein (PTP), albumin (A), globulin	
	(G) and albumin to globulin ratio (A/G ratio).	
8	Effect of dietary supplements by organic	
O	chromium, organic selenium and Vitamin E on	55
		33
0	antioxidant status of broiler chicks at 42 day of age.	
9	Effect of dietary supplements by organic	
	chromium, organic selenium and Vitamin E on	
	Titration against Newcastle Disease Virus (NDV)	

	of broiler chicks at 42 day of age.	55
10	Effect of dietary supplements by organic	
	chromium, organic selenium and Vitamin E on	
	Insulin-like Growth factor -1 (IGF-I)	56
11	Effect of dietary supplements by organic	
	chromium, organic selenium and Vitamin E on	
	Heat shock protein 70 (HSP70) of broiler chicks at	
	42 day of age	57
12	Effect of dietary supplements by organic	
	chromium, organic selenium and Vitamin E on	
	Carcass characteristics and some organs weights in	
	broiler chicks at 42 day of age.	58
13	Effect of some dietary supplements and early age	
	heat conditioning on Body weight (BW) and body	
	weight gain (BWG) of broiler chicks at different	
	ages.	60
14	Effect of some dietary supplements and early age	
	heat conditioning on feed intake (FI) and Feed	
	conversion ratio (F.C) of broiler chicks at different	
	ages.	62
15	Effect of some dietary supplements and early age	
	heat conditioning on hematological parameters of	
	broiler chicks at 21 DOA.	
		64
16	Effect of some dietary supplements and early age	
	heat conditioning on hematological parameters of	
	broiler chicks at 42 DOA.	65
17	Effect of some dietary supplements and early age	
	heat conditioning on Plasma total protein (PTP),	
	albumin (A), globulin (G) and albumin to globulin	
	ratio (A/G ratio) of broiler chicks at 21 DOA.	67

18	Effect of some dietary supplements and early age	
	heat conditioning on Plasma total protein (PTP),	
	albumin (A), globulin (G) and albumin to globulin	
	ratio (A/G ratio) of broiler chicks at 42 DOA.	68
19	Effect of some dietary supplements and early age	69
	heat conditioning on antioxidant status of broiler	
	chicks.	
20	Effect of some dietary supplements and early age	
	heat conditioning on antibody response against	70
	Newcastle Disease Virus (NDV).	
21	Effect of some dietary supplements and early age	
	heat conditioning on Insulin-like Growth factor -I	72
	(IGF-I) and Heat shock protein 70 (HSP70) of	
	broiler chicks.	
22	Effect of some dietary supplements and early age	
	heat conditioning on Carcass characteristics of	74
	broiler chicks at 42 day of age.	
23	Effect of some dietary supplements and early age	
	heat conditioning on weights of some organs of	75
	broiler chicks at 42 day of age.	

VIII

LIST OF FIGURES

Figure		Page
1	Mechanism of inactivation of free radicals by vitamin E	29
2	Temperature Humidity index in the first Expermint	42
3	Temperature Humidity index in the second Expermint	43