Ain Shams University
Faculty of Engineering
Department of Architectural Engineering

Toplighting for Enhancing Daylighting Performance in Wide Span Spaces

Presented by:

Architect/ Yasmine Refat El-Mohammady Soliman

BSc in Architecture 2010 – Port Said University

A Thesis Submitted in Partial Fulfillment of the Requirements for

M.SC. Degree in Architecture Engineering

Under The Supervision:

Prof. Dr. Morad Abdelkader

Professor of Architecture and Environmental Control Faculty of Engineering- Ain Shams University

Prof. Dr. Hanan Mostafa Kamal Sabry

Professor of Architecture and Environmental Control Faculty of Engineering- Ain Shams University

Dr. Ashraf Ali Ibrahim Nessim

Assistant Professor - Department of Architecture Faculty of Engineering- Ain Shams University

STATEMENT

This thesis is submitted to Ain Shams University for the M.Sc. degree in Architecture.

The work included in this thesis was carried out by the researcher at the Department of Architecture, Faculty of Engineering, Ain Shams University, during the Period from April 2011 to April 2015.

No Part of this thesis has been submitted for a degree of a qualification at any other university or institute.

Name: Yasmine Refat El-Mohammady Soliman

Signature:

Date:

BOARD OF EXAMINERS

Researcher name: Yasmine Refat El-Mohammady Soliman

<u>Thesis title:</u> "Toplighting for Enhancing Daylighting Performance in Wide Span Spaces"

Degree: Master of Science in Architecture

Board Signature

Professor Dr. Ahmed Fikry	
Professor of Architecture and	
Environmental Control	
Department of Architecture	
Faculty of Engineering	
Cairo University	
Professor Dr. Sayed Madboly	
Professor of Architecture and	
Environmental Control	
Department of Architecture	
Faculty of Engineering	
Ain Shams University	
Professor Dr. Morad Abdelkader	
Professor of Architecture and	
Environmental Control	
Department of Architecture	
Faculty of Engineering	
Ain Shams University	
Professor Dr. Hanan Mostafa Kamal	
Sabry	
Professor of Architecture and	
Environmental Control	
Department of Architecture	
Faculty of Engineering	
Ain Shams University	

Date: / / 2015

TO MY DEAREST FAMILY

TO MY PRECIOUS FATHER AND MOTHER

TO MY BELOVED HUSBAND

TO MY SISTER AND BROTHERS

Acknowledgement

After Thanking Allah for all his favors to me. I am honored to get the chance to study and register at Ain Shams University. I wish to express my gratitude to several people whom I would never have been able to finish my thesis without the guidance of my professors, help from friends, and support from my family and husband.

I would like to express my deepest gratitude to my advisor, Professor Dr. Morad Abdelkader, for his excellent guidance, caring, patience, and providing me with an excellent atmosphere for doing research. I would like to thank Professor Dr. Hanan Mostafa Kamal Sabry who let me experience the research beyond the textbooks, patiently corrected my writing. I would also like to thank Dr. Ashraf Ali Ibrahim Nessim for always having time to revise my work step by step, correct and guide me through my research.

Also, I would like to thank Dr. Wagih Fawzy for giving me the love, passion and interest in the field of daylighting before and after graduation. I also would like to thank Eng. Ayman Wagdy for giving me the knowledge and teaching me how to use software program in the field of research. His guidance was always there. I wouldn't accomplish simulation part without him. I want to express my thanks to my best friend and colleague Nouran Adel who encouraged me and gave me the positive support in my worst time and giving me hope to finish this research.

Finally, I would like to thank my husband, Eng. Khaled Younes for always being there for me cheering me up and stood by me through the good and the worst times. His help was willingly and never stopped. He always gives me hope when I get upset and always giving me the push to do the best I have. Finishing my research would not have been possible without his helps.

Most of all, I would also like to thank my precious family, my parents, elder sister and three younger brothers for believing in me and encouraging me to keep learning and love knowledge with their best wishes. My mother Eng. Omima who gave me the life and taught me the meaning of success and the value of education. My father, Mr. Refat for being there when things go wrong. It was his love that raised me up again when I got weary. I owe him everything. I wish to show my parents just how much I love and appreciate them.

Abstract

By the development of technology that allowed huge enclosed spaces to be constructed, the issue of how to daylit these spaces was necessary. Toplighting was the suitable solution to provide even distribution of daylighting performance inside wide span spaces. Different types of toplighting was created to meet the design and the function requirements. However in wide span spaces as in sport halls, many designers neglect daylighting for the sensitivity function needs. The thesis aims at identifying toplighting concepts and configurations that can be used in wide span spaces like sport halls to create a pleasant environment. The research concentrates on sawtooth roofs as a type of toplighting and investigates the effect of using different shading techniques integrated with sawtooth roof such as: louvered overhang, internal louvers or baffles and external louvers. The thesis also investigates the effect of changing the roof configuration on daylighting performance of toplighting. The research tries are chosen under the sunny clear sky of Cairo, Egypt.

This thesis consists of three parts and ends with the conclusions and recommendations. The first part (chapter 1) investigated the different types of toplighting and its design considerations. It also discussed the types of shading techniques. In the second part (chapter 2) four performance metrics were specified. These metrics are Daylighting Availability, Spatial Daylight Autonomy (sDA), Annual Sunlight Exposure (ASE) and Daylight Glare Probability (DGP). A standard multi-sport hall was selected in Cairo as a case study with sawtooth roof with different design variants and its daylighting performance was analyzed. In the third part (chapters 3 and 4) the effect of using shading techniques was studied. Moreover, an investigation was conducted on the effect of roof configuration on daylighting performance. Parametric design was used for modeling using Grasshopper and Rhinoceros 3D modeling software. Diva-for-Rhino a daylighting simulation plug-in was used to interface Radiance and Daysim for annual daylighting simulation and illuminance calculation.

The results provide the daylighting performance of different design variants, different techniques and parameters. Results present design guidelines for toplighting in multi-sport halls under sunny clear sky of cairo.

List of Contents

Abstract List of Contents List of Figures List of Tables Introduction

Overview
Research Problem
Research objective
Research Methodology
Scope and limitations
Research Structure
Previous Related Thesis

Chapter 1: Toplighting and Wide Span Spaces

1.1	Introduction	3
1.2	Overview of Wide Span Spaces	3
	1.2.1 Definition and Parameters of Wide Span Spaces	3
	1.2.2 s and Functions of Wide Span Spaces	3
	1.2.2.1 Overview of Sport Halls	4
	1.2.2.2 Features of sport halls	. 4
1.3	Toplighting Concepts and Specifications for Wide Span Spa	ces
		5
	1.3.1 Toplighting Characteristics	. 5
	1.3.2 Types of Toplighting	. 6
	1.3.2.1 Direct Toplighting	
	1.3.2.2 Indirect Toplighting	. 8
	1.3.3 Toplighting Design Consideration	. 9
	1.3.3.1 Glazing Materials	.10
	1.3.3.2 Light Wells	
	1.3.3.3 Reflectance of Surfaces	11
1.4	Types of Toplighting Techniques	11
	1.4.1 Louvered Overhangs	12
	1.4.2 Internal Louvers or Baffles	
	1.4.3 External Louvers	13

1.5	Examples of Utilizing Toplighting in Sport Halls	14
	1.5.1 Marylebone Cricket Club Indoor School (England) .	14
	1.5.1.1 Project Description	14
	1.5.2.2 Sport Hall Area	15
	1.5.2.3 Toplighting concept	15
	1.5.2 Inzell Speed Skating Stadium (Germany)	17
	1.5.2.1 Project Description	17
	1.5.3.2 Sport Hall Area	18
	1.5.3.3 Toplighting concept	18
	1.5.3 Pajol Sports Centre (Paris)	19
	1.5.3.1 Project Description	19
	1.5.1.2 Sport Hall Area	
	1.5.1.3 Toplighting concept	
1.6	Conclusion	21
Cha	antav2. Simulation Mathadalagy of Davlighting Dauf	
CII	apter2: Simulation Methodology of Daylighting Perf	ormance
2.1	Introduction	25
2.2	Overview of Daylighting Performance Metrics	
	2.2.1 Spatial Daylight Autonomy	
	2.2.2 Annual Sunlight Exposure	
	2.2.3 Daylight Availability	
	2.2.4 Daylight Glare Probability (DGP)	
2.3	Base Case Specifications	
	2.3.1 Base Case Function	
	2.3.2 Base Case Parameters	
2.4	Performance Acceptance Criteria	
2.5	Simulation Methodology	
	2.5.1 Simulation Inputs	
	2.5.1.1 daylighting Target	
	2.5.1.2 Analysis Software Simulation Tool	
	2.5.1.3 Design Variants and 3D Parametric Models	31
	2.5.1.4 Weather Data File	
	2.5.1.5 Working Plane	34
	2.5.1.7 Simulation Metrics Parameters	
	2.5.2 Simulation Outputs: Results	
	2.5.2.1 Spatial Daylight Autonomy, Annual sunlight Ex	
	Daylight availability Results	35
_	2.5.2.2 Daylight Glare Probability Results (DGP)	
2.6	Conclusion	43

Chapter 3:	Daylighting	Performance	Analysis for	Shading
Techniques	• 0		•	

3.1

3.2

Introduction 49

Shading Techniques Simulation methodology49

3.3	Conce	epts of Designing Shading Techniques	50
	3.3.1	Louvered Overhang Design	51
		Internal Louvers	
	3.3.3	External Louvers Design	54
3.4	Resul	ts of Daylight Availability, Spatial Daylight <i>i</i>	Autonomy
(sD	A) and	Annual Sunlight Exposure (ASE)	55
	3.4.1	Louvered Overhang Results	55
		3.4.1.1 South Orientation	
		3.4.1.2 East/West Orientation	60
	3.4.2	Internal Louvers	64
		3.4.2.1 South Orientation	_
		3.4.2.2 East/West Orientation	
	3.4.3	External Louvers	
		3.4.3.1 South Orientation	
		3.4.3.2 East / West Orientation	
3.5		ht Glare Probability Results	
3.6	Conclus	sion	80
	orman	Roof Configuration Effects on Daylighting ce	<u>g</u>
4.2 4.3	Roof C	ction Configuration Simulation methodologys of Spatial Daylight Autonomy (sDA), A	111 Annual Sunligh
	•	e (ASE) and Daylight Availability	
4.		up One Results	
		.1.1 Results of North Direction	
		.1.2 Results of South Direction	
		.1.3 Results of East West Direction	
4.		up Two Results	
		Results of North Direction	
		South and East West Orientation	
		Glare Probability Results	99
4.5 (
	onclus	ion	