FLUORESCENCE IN SITU HYBRIDIZATION ANALYSIS OF ADULT AML ACCORDING TO RECENT UPDATES OF CLINICAL CYTOGENETICS GUIDELINES AND QUALITY ASSURANCE

Thesis

Submitted for Partial Fulfillment of Master Degree In Clinical and Chemical Pathology

By

Samar Magdy EL Sherif (M.B., B.Ch) Ain Shams University

Supervised By

Prof. Dina Adel Fouad Mohamed

Professor of Clinical Pathology Faculty of Medicine - Ain Shams University

Prof. Nevine Nabil Mostafa

Assistant Professor of Clinical Haematology Internal Medicine Department Faculty of Medicine - Ain Shams University

Dr. Yasmin Nabil Salem

Lecturer of Clinical Pathology Faculty of Medicine - Ain Shams University

> Faculty of Medicine Lin Shams University 2015

List of Abbreviations

Abb.	Full Term	ı			
ABL	Abelson homolog)	murine	leukemia	(viral	oncogene
α-KG	Alpha keto	glutarate			
ALL	Acute lymp	phoblastic	leukemia		
AML	Acute mye	loid leuke	emia		
ANAE	Alpha napl	nthyl aceta	ate esterase		
Anti- RC84	Anti-huma	n erythrol	eukemia cel	l line ant	igen
APL	Acute pron	nyelocytic	leukemia		
AS203	Arsenic				
ATRA	Alltrans ret	inoic acid	l		
BAALC	Brain and a	acute leuk	emia cytopla	asmic	
BCR	B – Cell re	ceptor			
BM	Bone marre	ow			
BMT	Bone marro	ow transp	lantation		
Brdu	Bromodeo	xyuridine			
CAE	Chloroacet	ate esteras	se		
CALGB	Cancer and	l leukemia	a group B		
CAN	Candida ge	ene			
CBC	Complete b	olood cou	nt		
CBF	Core – bino	ding facto	r		
CD	Cluster of o	differentia	tion		
cDNA	Compleme	ntary deo	xyribonuclei	ic acid	
CEBPA	CCAAT/ e	nhancer b	inding prote	in A	
CEP	Centromer	ic Probe			
CGH	Comparativ	ve genom	ic hybridizat	ion	

Abb.	Full Term
CLL	Chronic lymphocytic leukemia
CML	Chronic myeloid leukemia
CN-AML	Cytogenitically normal AML
CNS	Central nervous system
CR	Complete remission
CSF-1	Colony stimulating factor
DA	Distamycin A
DAPI	Diamino-phenyl indole
DEK	Dog embryo kidney
del	deletion
D-FISH	Double fusion Fluorescence insitu hybridization
D2HG	D2- hydroxyglutarate
DIC	Disseminated intravascular coagulopathy
DW	Distilled Water
ECOG	Eastern cooperative oncology group
EDTA	Ethylene diaminetetraacetic acid
EFS	Event free survival
ELN	European leukemia net
EM	Electron microscope
EVI1	Ectopic viral integration site 1
FAB	French-American-British
FBS	Fetal bovin serum
FCM	Flow cytometry
FITC	Fluorescein isothiocyanate
FLT3	FMS-like tyrosine kinase 3
G-banding	Giemsa banding
G-CSF	Granulocyte colony stimulating factor

Abb.	Full Term		
GM-CSF	Granulocyte-monocyte colony stimulating factor		
GVHD	Graft – versus – host disease		
Hb	Haemoglobine		
HCT-CI	Hematopoietic cell transplantation specific comorbidity index		
HER2	Human epidermal growth factor receptor 2		
HLA-DR	Human leukocytic antigen		
HMF	Hypermetaphase FISH		
HSCT	Hematopoietic stem cell transplantation		
IDH1	Isocitrate dehydrogenase 1		
IFN-α	Interferon alpha		
IL	Interleukin		
Inv	Inversion		
IPT	Immunophenotyping		
IR	Incomplete remission		
ISCN	International system for human cytogenetic numenclature		
ITD	Internal tandem duplication		
LDH	Lactate dehydrogenase		
LSI	Locus specific identifier		
LSP	Locus specific probe		
MDS	Myelodysplastic syndrome		
m-FISH	Multicolour- FISH		
MLL	Mixed lineage leukemia		
MN1	Meningioma 1 gene		
MPN	Myeloprolifirative neoplasm		
MPO	Myeloperoxidase		

Abb.	Full Term
MRD	Minmal residual disease
m-RNA	Messenger RNA
NaF	Sodium fluoride
NCCN	National comprehensive cancer network
NEC	Non-erythroid compartment
NPM1	Nucleophosmin 1
NS	Non - significant
NSE	Non- specific esterase
OS	Overall survival
PAS	Periodic acid schiff
PB	Peripheral blood
PBS	Phosphate buffer saline
PCR	Polymerase chain reaction
PCS	Phycoerythrin – cyanine 5
PE	Phycoerythrin
Ph	Philadelphia chromosome
PI3-Kinase	Phosphatidyl inositol 3-kinase
PML	Promyelocytic leukemia
RARA	Retinoic acid receptor alpha
Rb	Retinoblastoma gene
RE	Restriction enzyme
RFS	Relapse free survival
RPMI	Rosewell park memorial inistitute
RT-PCR	Reverse transcriptase polymerase chain reaction
S	Significant
SBB	Sudan black B

Southern Blot Hybridization

Abb.	Full Term
SCE	Sister chromatide exchange
SCFR (c-Kit)	Stem cell factor receptor
SCT	Stem cell transplantation
SF-FISH	Single fusion – Fluorescence insitu hybridization
SSC	Standard saline citrate
SWOG	Southwest oncology group
t	Translocation
TdT	Terminal deoxynucleotidyl transferase
TEM	Transmission electron microscopy
TKD	Tyrosine kinase domain
TKI	Tyrosine kinase inhibitor
TLC	Total leukocytic count
TNF	Tissue necrosing factor
UD	Undetermined
VEGF	Vascular endothelial growth factor
WCP	Whole chromosome painting probe
WHO	World health organization
WT1	Wilms tumor 1
	Monosomy
+	Trisomy

List of Tables

Table No.	Title Page W	lo.
Table (1):	Incidence of Hematopoietic Malignancies In Arab Countries Including leukemia	6
Table (2):	Genetic disorders implicated in AML pathogenesis	8
Table (3):	Environmental factors that contribute to AML	8
Table (4):	Examples of some genes involved in AML pathogenesis.	. 11
Table (5):	FAB classification of acute myeloid leukemia.	. 17
Table (6):	WHO classification system of AML in 2008.	. 18
Table (7):	Cytochemical stains in AML	. 27
Table (8):	Immunophenotypic patterns in AML subtypes.	. 29
Table (9):	Risk group definition based on cytogenetic evaluation at diagnosis	. 31
Table (10):	Prognostic value of molecular aberrations in AML:	. 36
Table (11):	Risk group definition by combining cytogenetics& molecular markers evaluated at diagnosis	. 37
Table (12):	Selected New Agents under Study for Treatment of Adults with AML	. 40
Table (13):	Indication for allogeneic stem cell transplantation in acute myeloid leukemia	. 42
Table (14):	Examples of some chromosomal abnormalities in AML	. 44
Table (15):	Epidemiological, morphological and immuno-phenotypic characteristic of t (8; 21)	. 46
Table (16):	Epidemiological, morphological and immuno-phenotypic characteristic of t (15; 17)	. 48
Table (17):	Epidemiological, morphological and immuno-phenotypic characteristic of inv 16	. 50
Table (18):	Epidemiological, morphological and immuno-phenotypic characteristic of t (9; 11) (p22; q23)	. 53
Table (19):	Epidemiological, morphological and immuno-phenotypic characteristic of t (6; 9) DEK/CAN.	. 57

List of Tables (Cont...)

Table No.	Title	Page No.
Table (20) :	Epidemiological, morphological and immuno-ple characteristic of inv (3) (q21q26.2)	¥ 1
Table (21):	Clinical correlation of common genetic aberrations i	n AML 68
Table (22):	The main types of chromosome banding methods	72
Table (23):	Clinical & laboratory findings, IPT and outcome diagnosed AML patients	•
Table (24):	Clinical and lab data of the 41 newly diagnose patients	
Table (25):	Immunophenotyping pattern of newly diagnosed AM	ML 125
Table (26):	FISH pattern of newly diagnosed AML patients	127
Table (27):	Results of AML patients' outcome in relation to prognostic factors	

List of Figures

Fig. W	o. Title Page No	•
Fig. (1):	Model of leukemogenesis with two cooperating classes of mutations	9
Fig. (2):	The interplay of different molecular alterations in the development of AML	13
Fig. (3):	Schematic presentation of some intracellular signaling pathways with relevance for the pathogenesis of AML	16
Fig. (4):	Algorithmic Approach To The Diagnosis of Acute Myeloid Leukemia.	19
Fig. (5):	Auer Rods seen in AML, Specific to M2 type	. 25
Fig. (6):	A high power view of a bone marrow smear of M0/M1 subtype of AML	25
Fig. (7):	A high power view of a bone marrow smear of M1 Subtype of AML	25
Fig. (8):	A high power view of a bone marrow smear of M2 Subtype of AML	25
Fig. (9):	A high power view of a bone marrow smear of M3subtype Of AML	26
Fig. (10):	A high power view of a bone marrow smear shows M3v Subtype of AML	26
Fig. (11):	A high power view of a bone marrow smear shows M4 Subtype of AML	26
Fig. (12):	A high power view of a bone marrow smear shows M5a subtype of AML	26
Fig. (13):	A high power view of a bone marrow smear shows M5b subtype of AML	26
Fig. (14):	A high power view of a bone marrow smear shows M6 subtype of AML	26
Fig. (15):	A high power view of a bone marrow smear shows M7 Subtype of AML	27
Fig. (16):	MPO positive	28
Fig. (17):	Flow chart for the therapy of newly diagnosed acute myeloidleukemia	. 38

Tist of Figures $_{\text{(Cont...)}}$

Fig. W	lo. Title Page No	
Fig. (18):	Morphological and chromosomal features in t (8; 21)	45
Fig. (19):	The t (15; 17) (q22; q21) PML/RAR-α)	47
Fig. (20):	Normal structure of chromosome 16 and the percicentric inversion of chromosome 16	51
Fig. (21):	MLL gene and partner genes	54
Fig. (22):	t (6; 9) (p21; q34)	57
Fig. (23):	5q-deletion	59
Fig. (24):	A normal G-banded bone marrow karyotype	72
Fig. (25):	Principle of FISH technique	76
Fig. (26):	Signal pattern positive for BCR/ABL fusion gene by LSI BCR/ABL single fusion, dual color probe	82
Fig. (27):	Signal pattern positive for BCR/ABL fusion gene by LSI BCR/ABL double fusion, dual color probe	83
Fig. (28):	Examples of FISH probe designs commonly used in hemato- lymphoid disorders and their resulting hybridization patterns	84
Fig. (29):	Whole chromosome paint	85
Fig. (30):	Multicolor FISH	86
Fig. (31):	Comparative genomic hybridization	89
Fig. (32):	Schematic drawing of the PCR cycle	94
Fig. (33):	cDNA microarray	101
Fig. (34):	Nucleic acid hybridization	107
Fig. (35):	A pie Chart results of numerical abberrations in all patients	129
Fig. (36):	A pie Chart results of structural aberrations in all patients	129
Fig. (37):	A Bar Chart of TLC in relation to patient outcome in newly diagnosed patients	130
Fig. (38):	A Bar Chart of Numerical abberrations in relation to patient outcome in newly diagnosed patients	130
Fig. (39):	A Bar Chart of Structural abberrations in relation to patient outcome in newly diagnosed patients	131

PROFESSIONAL GUIDELINES FOR CLINICAL CYTOGENETICS OF ACUTE MYELOID LEUKAEMIA

I-INTRODUCTION

Professional guidelines for Cytogenetics laboratories incorporate the standards imposed by regulatory bodies (Clinical Pathology Accreditation (CPA)) and by statute (Clinical Governance) (Association for Clinical Cytogenetics, 2012).

II-BACKGROUND

Cytogenetic analysis is integral to the diagnosis and/or classification of both AML and MDS, and is recommended in clinical guidelines (Milligan et al., 2006 and Dohner et al., 2010). Detection of disease-specific abnormalities can allow the correct diagnosis to be reached, provide information on prognosis and allow a risk classification to be made. It can also be useful in assessing disease progression or response to treatment. This information can be used by the clinician to counsel the patient and to select the appropriate mode of treatment.

A) AML Clonal karyotype:

Abnormalities are found in leukaemic cells in approximately 55% of adult AML cases and 78% of childhood AML (Milligan et al., 2006 and von Neuhoff et al., 2010), detection of these abnormalities can aid the diagnosis by demonstration of clonality .Many abnormalities are not specific

to AML and general markers of myeloid neoplasia are common. Within the World Health Organisation Classification of Tumours of Haematopoietic & Lymphoid Tissues 2008 (Swerdlow et al., 2008), a number of diagnoses within AML are now defined by specific cytogenetic abnormalities.

B) Cultures:

It is recommended that a method of cell counting is used, so that final culture densities can be optimised to approximately 1x106 /ml. When there is sufficient sample, at least two culture types should be initiated to increase the chance of obtaining analysable abnormal metaphase preparations and detecting the abnormal clone. Standard one and/or two day cultures are appropriate for all myeloid disorders. It has been reported that growth factor supplements, such as granulocyte colony stimulating factor, granulocyte macrophage colony stimulating factor and interleukin-3, may improve the quality of cytogenetic preparations and facilitate chromosome analysis in myeloid malignancies (Earle et al., 2007). Occasionally, AML may present as a solid, extra-medullary granulocytic sarcoma either with or without concurrent bone marrow infiltration. Cytogenetically, t(8;21)(q22;q22) or inv(16)(p13q22)frequent findings. Tissue samples should be disaggregated to produce a cell suspension; this may then be cultured, processed and analysed in the same way as bone marrow.

C)Analysis:

1- G-banded analysis for AML and MDS at diagnosis:

For all diagnostic cases, if no clonal abnormality is detected by G-banding, a minimum of 20 metaphases must be

examined, with at least 10 of these being fully analysed. If fewer than 20 suitable metaphases are available, the result must be reported with a 'partial analysis' caveat. If 10 cells cannot be fully analysed in a case with normal cytogenetics then this must be considered a failed analysis. Where an abnormal clone is detected, examination of 10 metaphases is recommended, with at least five of these being fully analysed. Abnormal results may, if necessary, be reported on fewer metaphases, provided that the ISCN criteria for a clone are fulfilled (i.e. two or more cells with same extra chromosomes or structural rearrangements, or three or more with the same chromosome loss). FISH may be useful corroborate the presence of abnormalities tentatively identified in such restricted analyses. In the case of finding a single cell with a potentially significant abnormality, such as loss of chromosome 7, it is recommended that a minimum of 10 additional cells are scored in order to exclude this, or that FISH analysis is considered.

2-FISH/RT-PCR analyses at diagnosis:

a)Acute promyelocyticleukaemia(APL): If APL is suspected presentation, rapid analysis of **RARA** rearrangement status may be necessary and this may be best achieved by FISH or RT- PCR. It is important to distinguish between t(15;17)(q24;q21) PML-RARA and t(11;17)(q23;q21) ZBTB16(PLZF)-RARA in APL since these have differing responses to ATRA (Sanz et al., 2009). In the situation where metaphase chromosomes are unavailable and FISH indicates RARA rearrangement but not PML-RARA fusion, then analysis should be undertaken to rule out ZBTB16 (PLZF) involvement. Since there are currently no commercial FISH probes for ZBTB16(PLZF)-RARA, this may require referral to another laboratory.

It is important to note that variant rearrangements can occur which are both chromosomally cryptic and also normal by FISH analysis using both PML-RARA dual fusion and RARA break apart probes. RT-PCR analysis must be performed in such cases; this may require referral to another laboratory. NB/ the recently redefined location for PML is 15q24; this should be used in the translocation ISCN.

b)Inv(16)(p13q22): This subtle rearrangement may be overlooked in poor quality preparations. In cases where G-banding shows apparently normal chromosomes 16, FISH or RT-PCR analyses must be carried out if (i) the haematologist reports bone marrow morphology consistent with inv (16), or (ii) secondary abnormalities associated with inv(16), such as deletion of 9q or trisomy 22, are identified in the karyotype. Even if an inv (16) is detected by G-banding, it is recommended that FISH or RT-PCR be used to confirm the interpretation. bi-phenotypicleukaemia / leukaemia in infants.

3-Unsuccessful Karyotype – FISH panels:

When chromosome analysis is unsuccessful due to lack of metaphases or poor quality preparations, interphase FISH and/or RT-PCR should be considered to investigate abnormalities of established prognostic importance. The need for such studies will vary from case to case, taking into account the potential impact on clinical management approaches.

D) Interpretation and Reporting:

Abnormal results must be linked where possible to WHO classification subtypes (**Swerdlow et al., 2008**). If a patient is known to be entered onto a particular trial, then the appropriate risk stratification should be given according to the trial classification. If there is a discrepancy with more recent data, then this should be highlighted.

1- Karyotype complexity:

Historically, the criteria used to classify karyotype complexity have not been clearly or consistently defined. The number of abnormalities used to define complexity differs in AML and MDS, and so reports must refer to a particular prognostic scheme; this can be problematic since a diagnosis is often not confirmed at the time of requesting cytogenetics, it is recommended to use the classification of complexity described in Grimwade et al. 2010 (**Grimwade et al., 2010**) which stipulates \geq 4 abnormalities. The classification of Chun et al. 2009 (**Chun et al., 2009**) is recommended for scoring the number of cytogenetic abnormalities in MDS.

2-Prognosis:

Many cytogenetic abnormalities in AML carry a prognostic association. Information regarding prognosis may be derived from WHO (Swerdlow et al., 2008), or where a specific prognosis is based on multiple publications or inclusion on national or international trials. In such cases, prognostic associations must be reported.