Study of Neutrophil Nicotinamide Adenine Dinucleotide Phosphate Oxidase Activity and Neutrophil Extracellular Traps in Pediatric Systemic Lupus Erythematosus

Thesis

For Partial Fulfillment of M.D. Degree in Pediatrics

Submitted by

Sally Gouda Mohammed Mohammed

M.B., B.Ch. (2008), MS Pediatrics (2014)

Supervised by

Prof. Mohamed Hesham Mohamed Ezzat

Professor of Pediatrics Faculty of Medicine- Ain Shams University

Dr. Dalia Helmy El-ghoneimy

Associate Professor of Pediatrics Faculty of Medicine-Ain Shams University

Dr. Rasha Hassan El-Owaidy

Lecturer of Pediatrics
Faculty of Medicine-Ain Shams University

Dr. Mohammed Tareef Hamza

Associate Professor of Clinical Pathology Faculty of Medicine-Ain Shams University

> Faculty of medicine Ain shams university 2017

سورة البقرة الآية: ٣٢

It's now and always the blessing of The Most Merciful **Allah.** We pray for Him to accept and bless this modest effort.

I would like to express my deep thanks, sincere gratitude and appreciation to Prof. Mohamed Hesham Mohamed Ezzat, Professor of Pediatrics, Faculty of Medicine, Ain Shams University, Dr. Dalia Helmy El-Ghoneimy Associate Professor of Pediatrics, Faculty of Medicine, Ain Shams University, Dr. Rasha Hassan El-Owaidy, Lecturer of Pediatrics, Faculty of Medicine, Ain Shams University, and Dr. Mohammad Tareef Hamza, Associate Professor of Clinical Pathology, Faculty of Medicine, Ain Shams University, under their supervision, I had completed this work, I am deeply grateful for their professional advice, valuable instructions, their guidance and support throughout my work.

I would like to thank my dear patients and their parents who accepted to participate in this work; I appreciate your understandings and cooperation. May Allah grant you good health and happy life.

≥Sally Gouda

To My Husband and Kids,

Who have always been a source of inspiration and encouragement

To My Beloved Parents,

The reason of what I become today

Thanks for your great support and continuous care

To My Brothers,

I am really grateful to both of you

Contents

Subjects	Paģe
List of abbreviations	II
List of Tables	V
List of Figures	VIII
• Introduction	1
Aim of the Work	5
Review of Literature	6
Subjects and Methods	52
• Results	71
• Discussion	115
• Recommendation	133
• Summary	134
• References	139
Arabic Summary	

Abbrev.	Meaning
ANA	Anti-nuclear antibody
Anti- B2GP1	Anti-beta-2-glycoprotein 1
ANCA	Anti-neutrophil cytoplasmic antibody
cANCA	cytoplasmic Anti-neutrophil cytoplasmic antibody
pANCA	perinuclear Anti-neutrophil cytoplasmic antibody
Anti- dsDNA	Anti-double stranded deoxyribonucleic acid
APCs	Antigen presenting cells
aPL	Antiphospholipid syndrome
APS	Antiphospholipid antibody syndrome
C/EBP	Enhancer-binding protein
C4BP	C4b-binding protein
C3	Complement 3
C5a	Complement component 5a
CACs	Circulating angiogenic cells
CBC	Complete blood count
CCAAT/ EBPs	Cytosine-cytosine-adenosine-adenosine-thymidine / enhancer binding proteins
CG	Cathepsin G
CGD	Chronic granulomatous disease
CNS	Central nervous system
CXCR	Chemokine receptor type

DHR	Dihydrorhodamine
DPI	Diphenyleneiodonium
EDTA	Ethylene diaminetetraacetate
ELISA	Enzyme-linked immunosorbent assay
EPCs	Endothelial progenitor cells
ESR	Erythrocyte sedimentation rate
fMLP	Formylmethionyl-leucyl-phenylalanine
G-CSF	Granulocyte colony-stimulating factor
GM-CSF	Granulocyte-macrophage colony-stimulating factor
hCAP18	Human cationic antimicrobial protein 18
HClO	Hypochlrous acid
HLE	Human leukocyte elastase
ICAM	Intercellular adhesion molecule
IF	Immuno-fluorescence
IFN	Interferons
IGF-I	Insulin-like growth factor I
Igs	Immunoglobulins
IL	Interleukin
JAM	Junctional adhesion molecule
LPS	Lipopolysaccharide
LDGs	Low-density granulocytes
LEF-1	Lymphoid enhancer-binding factor 1
LF	Lactoferrin
LFA-1	Lymphocyte function-associated antigen-1
LN	Lupus nephritis
LZ	Lysozyme
MAC-1	Macrophage antigen-1

MADCAM-	Mucosal vascular cell-adhesion molecule-1
mDCs	Myeloid <u>dendritic cell</u>
MPC-FL	Mean peak channel fluorescence
MPO	Myeloperoxidase
NCF2	Neutrophil cytosolic factor 2
NE	Neutrophil elastase
NETs	Neutrophil extracellular traps
NGAL	Neutrophil gelatinase-associated lipocalin
NLRP3	NOD-like receptor pyrin domain containing-3
NLRs	Nucleotide oligomerization domain -like receptors
NOD	Nucleotide oligomerization domain
NOI	Neutrophil oxidative index
Nox2	NADPH oxidase
PAD4	Peptidylargininedeiminase 4
PBMCs	Peripheral blood mononuclear cells
pDC	Plasmacytoid dendritic cell
PECAM-1	Platelet endothelial-cell adhesion molecule-1
PMA	Phorbol 12-myristate 13-acetate
PR3	Proteins proteinase 3
PRRs	Pattern recognition receptors
PSGL-1	P-selectin glycoprotein ligand-1
RIG-I	Retinoic acid inducible gene 1
ROS	Reactive oxygen species
SDI	Systemic Lupus International Collaborating Clinics/American College of Rheumatology (SLICC/ACR) Damage Index
SDF-1	Stromal cell-derived factor-1

SLICC	Systemic Lupus International Collaborating Clinics
SLE	Systemic lupus erythematosus
SLEDAI	Systemic Lupus Erythematosus Disease Activity Index
TLRs	Toll-like receptors
TNF-α	Tumor necrosis factor-α
TRAIL	TNF-related apoptosis-inducing ligand
TRIM	tripartite motif protein
VCAM-1	Vascular Cell-Adhesion Molecule-1
VLA-4	Very late antigen-4

List of Tables

No.	<u>Table</u>	Page
<u>1</u>	Neutrophil granules and their contents.	9
<u>2</u>	ANCA Interpretations	57
<u>3</u>	Systemic Lupus Erythematosus Disease Activity Index.	62
<u>4</u>	SLEDAI score.	64
<u>5</u>	Systemic Lupus International Collaborating Clinics/American College of Rheumatology (SLICC/ACR) Damage Index.	65
<u>6</u>	Interpretation of correlation coefficient.	68
<u>7</u>	Interpretation of Area under ROC curve.	68
<u>8</u>	Positive and negative predictive values.	69
<u>9</u>	Demographic and disease characteristics (clinical and laboratory data) of the studied SLE patients.	73
<u>10</u>	Laboratory parameters of the enrolled patients.	74
<u>11</u>	NET and DHR assay in patients and controls.	78
<u>12</u>	Receiver-operating characteristic (ROC) curve analysis for discrimination between patients and controls using NET.	80
<u>13</u>	Variation of NET results in different organs affection among enrolled patients	81
<u>14</u>	Variation of DHR results in different organs affection among enrolled patients	84
<u>15</u>	Comparison of NET and DHR in patients with proliferative and non-proliferative LN	87

No.	<u>Table</u>	<u>Page</u>
<u>16</u>	Comparison of NET and DHR in Patients with LN and CNS lupus	88
<u>17</u>	Correlation between both NET and DHR assay and the studied routine and immunological laboratory data	89
<u>18</u>	Correlation between both NET and DHR assay and global disease activity as per the SLEDAI	91
<u>19</u>	Correlation between both NET and DHR assay and age and immunosuppressive therapy received	92
<u>20</u>	Comparison between grades of SLEDAI, Renal SLEDAI and SDI as regard levels of NET	100
<u>21</u>	Comparison between grades of SLEDAI, Renal SLEDAI and SDI as regard levels of DHR	103
22	Multivariable binary logistic regression analysis for prediction of moderate or higher global disease activity as per the SLEDAI	106
<u>23</u>	Multivariable binary logistic regression analysis for prediction of renal activity as per the renal SLEDAI	107
<u>24</u>	Multivariable binary logistic regression analysis for prediction of lupus related damage as per the SDI	108
<u>25</u>	Receiver-operating characteristic (ROC) curve analysis to predict SLEDAI using NET	109
<u>26</u>	Receiver-operating characteristic (ROC) curve analysis to predict renal activity using NET	110
<u>27</u>	Receiver-operating characteristic (ROC) curve analysis to predict SDI using NET	111

List of Tables

No.	<u>Table</u>	<u>Page</u>
<u>28</u>	Receiver-operating characteristic (ROC) curve analysis to predict SLEDAI using DHR	112
<u>29</u>	Receiver-operating characteristic (ROC) curve analysis to predict renal activity using DHR	113
<u>30</u>	Receiver-operating characteristic (ROC) curve analysis to predict SDI using DHR	114

List of Figures

No.	<u>Figure</u>	<u>Page</u>
1	Surface receptors and cytoplasmic granules of neutrophils	10
<u>2</u>	Demonstrating global disease activity according to SLEDAI	75
<u>3</u>	Demonstrating lupus related damage according to SDI	76
<u>4</u>	Demonstrating immunosuppressive therapy received	77
<u>5</u>	NET level is significantly higher in the studied patients compared to the control group	79
<u>6</u>	No significant difference in DHR results between patients and controls	79
<u>7</u>	Receiver-operating characteristic (ROC) curve to define the best cut off value of NET	80
<u>8</u>	No significant difference in NET assay between patients with different classes of LN and those without	82
<u>9</u>	No significant difference in NET assay between patients with CNS lupus and those without	83
<u>10</u>	No significant difference in NET assay between patients with multi-organ affection and those without	83
<u>11</u>	No significant difference in DHR assay between patients with different classes of LN and those without	85
<u>12</u>	No significant difference in DHR assay between patients with CNS lupus and those without	86

List of Figures

No.	<u>Figure</u>	<u>Page</u>
<u>13</u>	No significant difference in DHR assay between patients with multi-organ affection and those without	86
<u>14</u>	Scatter plot showing strong negative correlation between NET and DHR	93
<u>15</u>	Scatter plot showing moderate positive direct correlation between NET and ESR	93
<u>16</u>	Scatter plot showing positive direct correlation between NET and BUN	94
<u>17</u>	Scatter plot showing moderate positive direct correlation between NET and 24 hour urinary protein excretion	94
<u>18</u>	Scatter plot showing moderate negative correlation between NET and C3 level	95
<u>19</u>	Scatter plot showing positive direct correlation between NET and Anti-DNA level	95
<u>20</u>	Scatter plot showing moderate positive direct correlation between NET and steroid dose	96
<u>21</u>	Scatter plot showing moderate negative correlation between DHR and ESR	96
<u>22</u>	Scatter plot showing moderate negative correlation between DHR and BUN	97
<u>23</u>	Scatter plot showing moderate negative correlation between DHR and 24 hour urinary protein excretion	97
<u>24</u>	Scatter plot showing moderate positive direct correlation between DHR and C3 level	98
<u>25</u>	Scatter plot showing negative correlation between DHR and Anti-DNA level	98

List of Figures

No.	<u>Figure</u>	<u>Page</u>
<u>26</u>	Scatter plot showing moderate negative correlation between DHR and steroid dose	99
<u>27</u>	NET is significantly higher in patients with moderate to severe disease activity	101
<u>28</u>	NET is significantly higher in patients with renal activity compared to those without	102
<u>29</u>	NET is higher in patients with mild damage compared to those with no damage	102
<u>30</u>	DHR is significantly lower in patients with moderate, severe and high severe disease activity	104
<u>31</u>	DHR is significantly lower in patients with renal activity compared to those without	105
<u>32</u>	DHR results are lower in patients with lupus related damage	105
<u>33</u>	Receiver-operating characteristic (ROC) curve for the predictive value of NET in SLEDAI	109
<u>34</u>	Receiver-operating characteristic (ROC) curve for the predictive value of NET in renal activity	110
<u>35</u>	Receiver-operating characteristic (ROC) curve for the predictive value of NET in SDI	111
<u>36</u>	Receiver-operating characteristic (ROC) curve for the predictive value of DHR in SLEDAI	112
<u>37</u>	Receiveroperating characteristic (ROC) curve for the predictive value of DHR in renal activity	113
<u>38</u>	Receiver-operating characteristic (ROC) curve for the predictive value of DHR in SDI	114