The Possible Beneficial Effect of Melatonin Co-administration to Perindopril on Left Ventricular Dysfunction Induced by Doxorubicin in Hypertensive albino Rats.

Thesis submitted for partial fulfilment of Master degree in Pharmacology & Therapeutics.

By

Takwa Mohammed Abdul Salam Elsaid

M.B., B.Ch. (2010), demonstrator in Department of Pharmacology & Therapeutics.

Faculty of Medicine, Ain Shams University

Supervised by

Prof. Dr. / Ahmed Al-Sayed Badawy

Professor of Pharmacology& Therapeutics. Faculty of Medicine Ain-Shams University

Ass. Prof. Dr. / Amany Helmy Mohamed

Assistant Professor of Pharmacology & Therapeutics. Faculty of Medicine Ain-Shams University

Ass. Prof. Dr. / Wessam Mostafa El-Bakly

Assistant Professor of Pharmacology & Therapeutics. Faculty of Medicine Ain-Shams University

Faculty of Medicine
Ain Shams University
2016

First of all, all gratitude is due to **God** almighty for blessing this work, until it has reached its end, as a part of his generous help, throughout my life.

It is a great pleasure to express my sincere thanks and gratitude to **Prof. Dr. Ahmed Al-Sayed Badawy**, Professor of Pharmacology and Therapeutics, Ain Shams University, for his consistent supervision, continuous enthusiastic encouragement and valuable advice. It is a great honor to work under his guidance and supervision.

I am also indebted to Ass. Prof. Dr. Amany Helmy Mohamed, Assistant Professor of Pharmacology and Therapeutics, Faculty of Medicine, Ain Shams University, who gave me much of her time, for her patience, valuable suggestions, continuous everlasting help and valuable scientific guidance and support through this work.

I want also to my sincere appreciation and gratitude to Ass.

Prof. Dr. Wessam Mostafa El-Bakly Assistant

Professor of Pharmacology and Therapeutics, Faculty of Medicine, Ain

Shams University, for her tremendous effort and time, valuable scientific

help and guidance and for her continuous directions and support throughout the whole work.

I would like to thank Ass. Prof. Dr. Mona Hussein Raafat Assistant Professor of Histology, faculty of medicine, Ain Shams University, for providing her time and support to accomplish the histopathological studies.

I would like also to thank **Dr. Ahmed Mohammed Abdella**, Researcher at Medical Research Centre, Ain Shams University

Hospitals for his great help in the practical part of this work.

I'm really indepted to **Prof. Dr. Ahmed Abd El-Salam**Professor of Pharmacology and Therapeutics, Faculty of Medicine, Ain
Shams University for supplying us with the Perindopril powder as a gift as
well known about Prof. Dr. Ahmed Abd El-Salam to help and support the
young candidates in need.

Last but not least, I dedicate this work to my family for their continuous devoted support and encouragement.

Takwa Mohammed Elsaid

List of contents

Chapters	Title	page
1	List of tables	IV
2	List of figures	VI
3	List of abbreviations	X
4	Introduction& aim of the work	1
5	Review of Literature Left ventricular dysfunction (LVD) Revalence Risk factors and etiology of LVD Rethogenesis and complications Clinical diagnosis Management of LVD Animal models of heart failure Perindopril Melatonin	6
6	Material and Methods	46
7	Results	61
8	Discussion	92
9	Summary and conclusion	106
10	Abstract	112
11	References	114
12	Arabic summary	

List of Tables

Table	Title	Page
1	Effect of perindopril and/or melatonin administration on systolic blood pressure in a rat model of left ventricular dysfunction induced by L-NAME and doxorubicin.	63
2	Effect of perindopril and/or melatonin administration on left ventricular diastolic pressure in a rat model of left ventricular dysfunction induced by L-NAME and doxorubicin.	66
3	Effect of perindopril and/or melatonin administration on left ventricular dp/dt _{max} in a rat model of left ventricular dysfunction induced by L-NAME and doxorubicin.	69
4	Effect of perindopril and/or melatonin administration on serum level of CK-MB isoenzyme in a rat model of left ventricular dysfunction induced by L-NAME and doxorubicin.	72
5	Effect of perindopril and/or melatonin administration on malondialdehyde in a rat model of left ventricular dysfunction induced by L-NAME and doxorubicin.	75

List of Tables (cont.) **Table** Title Page Effect of perindopril and/or melatonin administration on serum level of Superoxide 6 **78** dismutase in a rat model of left ventricular dysfunction induced by L-NAME doxorubicin. Effect of perindopril and/or melatonin administration on tumor necrosis factor- α in 7 81 a rat model of left ventricular dysfunction induced by L-NAME and doxorubicin. of perindopril and/or melatonin administration on transforming growth factor-8 84 β in a rat model of left ventricular dysfunction induced by L-NAME and doxorubicin. Effect of perindopril and/or melatonin administration on cardiac percentage area of collagen fibers in Masson's trichrome stained 91 sections in a rat model of left ventricular 9 dysfunction induced by L-NAME doxorubicin.

List of Figures

Figure	Title	page
(1)	Figure shows effects of the two arms of the renin–angiotensin system.	14
(2)	Figure shows the various stages of cardiovascular disease continuum and the different stages of intervention.	17
(3)	Figure shows physiological regulation of melatonin by the light/dark environment as detected by the retina.	31
(4)	Figure shows doxorubicin different effects on cardiomyocytes.	35
(5)	Figure shows different beneficial effects of melatonin on different body organs.	45
(6)	Chemical structure of perindopril arginine.	46
(7)	Chemical structure of melatonin (N-acetyl-5methoxytryptamine).	46
(8)	Chemical structure of (L-NAME).	47
(9)	Chemical structure of (doxorubicin hydrochloride).	47
(10)	Diagrammatic illustration of the study timeline for drugs, chemicals administration and the outcome measures.	50

List of Figures(Cont.)

Figure	Title	Pages
(11,12)	PowerLab data acquisition systems used for rat tail cuff systolic blood pressure measurements, record and analyze signals.	51
(13)	Systolic blood pressure recording using lab chart software showing pressure signals.	51
(14)	Millar Mikro-Tip® pressure catheter for measurement of ventricular or aortic pressure, ending by a specific sensor inserted in left ventricle or aorta of the rat during invasive pressure measurement.	53
(15)	Ventricular pressure chart view with cycle markers displayed on powerLab monitor as shown in the manual of AD instrument.	54
(16)	Open-chest approach: insertion of the catheter into the left ventricle following stabbing of the apex with a 25–30 gauge needle through the stab wound. sequentially numbered panels indicate stages of procedures.	54
(17A,B)	Effect of perindopril and/or melatonin administration on, systolic blood pressures in a rat model of left ventricular dysfunction induced by L-NAME and doxorubicin.	64
(18)	Effect of perindopril and/or melatonin administration on LVEDP in a rat model of left ventricular dysfunction induced by L-NAME and doxorubicin.	67

List of Figures(Cont.)

Figure	Title	pages
(19)	Effect of perindopril and/or melatonin administration on LV dp/dtmax in a rat model of left ventricular dysfunction induced by L-NAME and doxorubicin.	70
(20)	Effect of perindopril and/or melatonin administration on CK-MB isoenzyme in a rat model of left ventricular dysfunction induced by L-NAME and doxorubicin.	73
(21)	Effect of perindopril and/or melatonin administration on malondialdehyde in a rat model of left ventricular dysfunction induced by L-NAME and doxorubicin.	76
(22)	Effect of perindopril and/or melatonin administration on serum level of superoxide dismutase in a rat model of left ventricular dysfunction induced by L-NAME and doxorubicin.	79
(23)	Effect of perindopril and/or melatonin administration on tumor necrosis factor-α in a rat model of left ventricular dysfunction induced by L-NAME and doxorubicin.	82

Table of Figures(Cont.) **Figure Title** pages Effect of perindopril and/or melatonin administration on transforming growth factor -β in a rat model of left ventricular (24) **85** dysfunction induced by L-NAME and doxorubicin. (A,B,C,D,E) Photomicrographs of myocardium (25)of rats from different groups (H&E X540). 88 (A,B,C,D,E) Photomicrographs of myocardium of rats from different groups (Masson X540). **(26)** 89

	List of Abbreviations
ACE	Angiotensin converting enzyme
Ang-II	Angiotensin II
DOX	Doxorubicin
eNOS	Endothelial nitric oxide synthase
HF	Heart failure
L-NAME	N-Nitro-L-arginine methyl ester hydrochloride
LVD	Left ventricular dysfunction
LVEDP	Left ventricular end diastolic pressure
MDA	Malondialdehyde
MT	Melatonin
NO	Nitric oxide
RAAS	Renin angiotensin aldosterone system
ROS	Reactive oxygen species
SBP	Systolic blood pressure
SOD	Superoxide dismutase
TGF-β	Transforming growth factor-β
TNF-α	Tumor necrosis factor- α

Introduction

Left Systolic ventricular dysfunction is a pathological condition at which there is impaired myocardial contractility, with structural changes of the myocardium accompanied by increase in interstitial fibrosis and ventricular remodeling (Copete et al., 2015). It is considered a major global health problem, with huge economic burden (Cook et al., 2014).

The pathophysiology of failing of human heart is characterized by neurohormonal activation and autonomic imbalance with increase in sympathetic activity and withdrawal of vagal activity which initially able to compensate for the depressed myocardial function. However, their long-term activation has deleterious effects on cardiac structure and performance, like interstitial growth and remodeling that increase myocardial mass leading to cardiac decompensation and heart failure (HF) progression (Lymperopoulos et al., 2013).

Considerable progress in identification and description of the pathophysiological mechanisms that can lead to HF in humans has taken place over the past few decades (*Kemp and Conte, 2012*).

Unfortunately though, this progress couldn't give rise to significant advances in management for the causes of this syndrome and chronic ventricular dysfunction, treatment is still largely symptomatic, aiming at prolonging life expectancy of the patient

(without necessarily improving quality of life) (Georgiopoulou et al., 2012).

Therefore, it is absolutely crucial that future research in the field of HF continues to focus on its pathological mechanisms, especially at the molecular, biochemical, and cellular levels, for the hope of discovering a cure for this detrimental syndrome (Copete et al., 2015).

Renin Angiotensin System (RAS) is activated in patients with heart failure. Angiotensin converting enzyme (ACE) inhibitors are the principle key element of drug therapy for chronic heart failure because they reduce mortality and the risk of hospitalization for heart failure at all degrees of heart failure (*Gradman and Papademetriou*, 2009).

Perindopril which acts to inhibit ACE was confirmed to decrease sympathetic modulation and increase parasympathetic effect of the heart, and improve left ventricular function (Fox et al., 2007) and has shown antiinflammatory, antiatherosclerotic, antioxidant, and profibrinolytic effects (Krysiak and Okopie, 2008). Considering its properties and the gathered clinical evidence on efficacy and tolerability, perindopril fulfils the criteria for better hypertension and cardiovascular disease management (De Backer et al., 2003).

The ability of Melatonin to combat molecular damage to the heart becomes an interesting therapeutic strategy in the treatment of myocardial injury and fibrosis (*Yang et al., 2014*). Moreover, numerous studies suggest that melatonin plays a significant role in HF due to its antiflammatory, antioxidant and its antifibrotic properties (*Dominguez-Rodriguez et al., 2014*).

• Aim of the work:

The aim of the present study was to investigate the beneficial effect of co-administration of melatonin to perindopril regarding cardiac functions, myocardial damage, oxidative stress, inflammation and fibrosis, together with identification of histopathological changes resulted from an animal model of left ventricular dysfunction induced by doxorubicin in (L-NAME) hypertensive rats.

• Induction of left ventricular dysfunction:

Left ventricular dysfunction was induced by daily oral administration of L-NAME (40 mg/kg/day) for 8 weeks by gastric gavage (*Raja*, 2010) with intraperitoneal injection of doxorubicin hydrochloride (2.5mg/kg twice per week) (*Spivak et al.*, 2013) in the last 3 weeks of the experiment which lasted for 8 weeks.

• Study design:

30 male albino rats (weighting 200-250 g) were divided randomly into 5 groups, 6 animals each.

- 1- Control group (naïve) animals.
- 2- <u>L-NAME/DOX untreated rats:</u> L-NAME (40mg/kg/day) for 8 weeks by oral gavage and doxorubicin (2.5 mg/kg/twice per week) for the last 3 weeks by intraperitoneal injection.
- 3- <u>Perindopril treated rats:</u>L-NAME-doxorubicin intoxicated rats treated with perindopril (5mg/kg/day) for the last 3 weeks (*Louise et al.*, 2005) by daily oral gavage
- 4- <u>Melatonin treated rats:</u> L-NAME-doxorubicin intoxicated rats treated with melatonin (10mg /kg) for last 3 weeks (*Simko et al.*, **2014b**) by daily oral gavage.
- 5- <u>Perindopril/Melatonin treated rats:</u> L-NAME-doxorubicin intoxicated rats treated with perindopril (5mg/kg/day) and melatonin (10mg/kg) for the last 3weeks by daily oral gavage.

The duration of the whole study lasted for 8 weeks. Drugs were administered daily from the 6thweek.

Melatonin dose was selected from previous works were shown to lower increased blood pressure and protect the cardiovascular system against deleterious effect of hemodynamic overload (*Mukherjee et al., 2012*). Moreover, the higher dose of melatonin was shown to have sedative effects. Thus, the tolerable pharmacological dose of melatonin (10 mg/kg/day) may be sufficient to induce the potential protective effects of tested substances (*Simko et al., 2014b*).