Diagnosis and Management of Bile Duct Injuries During Laparoscopic Cholicystectomy

Essay

Submitted in partial fulfillment for the Master Degree in General Surgery

By

Ehab Mohamed moneer abd el azez M. B., B.Ch. Faculty of Medicine, Assuit University

Supervised by

Prof. Dr. Mohamed Ahmed Mohamed Khalaf

Professor of General surgery Faculty of Medicine, AinShams University

Dr. Walid Ibrahim AbdRabuh

Assistant professor of General surgery Faculty of Medicine, AinShams University

Dr. MostafaAbdoh Mohamed

Assistant professor of General Surgery Faculty of Medicine, AinShams University

Faculty of Medicine Ain-Shams University 2016

Acknowledgement

First and foremost I thank ALIAH who gave me the strength to fulfill this work as a part of his generous help throughout life. Also I want to thank my parents, my wife, my son, and my brothers for their continuous, extending and unlimited support to me.

I would like to acknowledge my deepest gratitude and appreciation to *Prof. Dr. / Mohamed Ahmed Mohamed Khalaf* Professor of General Surgery, Faculty of Medicine, *Ain Shams* for his supervision, advice and support throughout the whole work and throughout my training program.

I wish to express my deepest appreciation and thanks to **Dr.** Walid Ibrahim Abd Rabbuh Assistant Professor of General Surgery Faculty of Medicine, Ain Shams University for initiating, suggesting, planning, doing and finally assisting me in this work.

I am also deeply indebted, grateful, thankful and appreciating greatly *Dr. Mostafa*Abdoh Mohamad,

Assistant Professor of General Surgery Faculty of Medicine,

Ain Shams for his active participation, support, help, and assistance.

🗷 Ehab Mohamed moneer abd el azez

List of Contents

Title	Page No.
List of Tables	ii
List of Figures	iii
List of Abbreviations	v
Introduction	1 -
Aim Of The Work	5 -
Review of literature	
(Chapter 1):_Embryological and Surgical Anatomy the Intrahepatic and Extrahepatic Bilia Tree	ry
(Chapter 2):Laparoscopic Cholecystectomy and Whoto Convert	
(Chapter 3):Diagnosis of Bile Duct Injuries	48 -
(Chapter 4):Management of Bile Duct Injuries	58 -
(Chapter 5): How to Prevent Bile Duct Injuries Durin Laparoscopic Cholecystectomy	O
Summary	80 -
References	84 -
Arabic summary	••••••••

Tist of Tables

Table No	. Title	Page No
de	Consensus proposal of the ISGLS for efinition and grading of bile leakage epatobiliary and pancreatic surgery	e after
ar	Common clinical characteristics of nd main parameters for grading of bakage	ile
Table (3): I	Bismuth classification	52 -
	roposed definition of major and minuct injuries by McMahon et al	
Table (5):	Strasberg's classification	54 -
	Amsterdam Academic Medical Cenassification	
Table (7): N	Jeuhaus' classification	55 -
Table (8): (Csendes' classification	56 -
	Stewart-Way's classification of lapa	
Table (10):	Lau classification	57 -

List of Figures

Fig. No. Title Page No.
Figure (1): Progressive stages in the development of the
duodenum, liver, extrahepatic biliary system, and
pancreas 8
Figure (2): This view of a small section of a classic hepatic liver
"lobule" 10
Figure (3): Hepatic segmentation 12
Figure (4): The bile duct and pancreatic duct merge to form the
hepatopancreatic ampulla 13
Figure (5): Extrahepatic bile passages and pancreatic ducts 15
Figure (6): Extrahepatic Bile Ducts Anatomical Variations 18
Figure (7): Various types of confluence of the cystic duct and
common hepatic duct 20
Figure (8): Variations of convergence (confluence) of hepatic
ducts at the porta hepatic-extrahepatic 22
Figure (9): Variations of the hepatic duct 23
Figure (10): Todani's classification of choledochal cysts 24
Figure (11): Intrahepatic gallbladder 26
Figure (12): Floating gallbladder 26
Figure (13): Hepatic artery variations, 28
Figure (14): Cystic artery variations 30
Figure (15): Identify the cystic lymph node in the Calot's triangle 32
Figure (16): Define gallbladder cystic duct junction 32
Figure (17): Display all the structures in the Calot's triangle 33
Figure (18): Identify Rouviere's Sulcus before clipping 35
Figure (19): A:Empyema Gall Bladder, B: gangrenous cholecystitis, 42
Figure (20): Gross post operative adhesions seen on laparoscopy, 43
Figure (21): Strasberg's classification of bile duct injuries 54
Figure (22): End to Side HJ with insertion of a trans-anastomotic
stent tube. — - 65

Tist of Figures (Con)

Fig. No.	Title	Page No.
Figure (23): The l	Right hepatic artery	73 -
calcific	Abdominal radiograph cation and an abnormal gas apper quadrant of the abdom	collection within the
thicker	scan shows the soft-tissue ning, extension beyond the olecystic fluid	gallbladder wall, and
Figure (26): Rim	sign in acute cholecystitis.	77 -

Tist of Abbreviations

3D :Three Dimensional

ALT : Alanine Transamenase

ASA : American Society of Anaesesiologists

AST : ASpartate Transamenase

B.P : Blood Pressure

BDI : bile duct injury

BMI : Body Mass Index

CBD : Common Bile Duct

CHA : Common Hepatic Artery

ChD : Cholydecho Duodenostomy

CT :computed tomography

CVS :crtical view of safety

ECG : Elecro Cardio Giography

EE : End to End anastomosis

ERCP :Endoscopic Retrograde Cholangio

Pancreatography

GB : Gall Bladder

GDA : Gastro Duodenal Artery

HJ: Hepatico Jejunostomy

I.M : Intra Muscular

I.V : Intra Venous

IBDI :Intrahepatic Bile Duct Injuries

Tist of Abbreviations (Cont...)

IOC : Intra Operative Cholangiography

IOC : intra operative cholangiography

ISGLS :International Study Group of Liver Surgery

IVC : Inferior Vena Cava

LC : Laparoscopic Cholycystectomy

LHA : Left Hepatic Artery

MRA : Magnetic Resonant Angiography

MRCP :magnetic resonance cholangiopancreatography

MRI : Magnetic resonant Imaging

NIH : National Institute of Health

NOTES : Natural orifice transluminal surgery

OC : Open Cholycystectomy

OCHRA :Observational Clinical Human Reliability

Assessment system

PHA : Proper Hepatic Artery

PTBD : Percutaneous Transhepatic Biliary Drainage

PTC : Percutanous Transhepatic Cholangiography

SMA : Superior Mesenteric Artery

US :Ultra Sonography

INTRODUCTION

Biliary calculous disease is one of the most common disorders that occur in humans. The incidence is 10-20% of the whole adult population in the world, making laparoscopic cholecystectomy one of the most frequently perform operations in the world. (**Townsend et al., 2010**).

Open cholecystectomy has been largely replaced by laparoscopic cholecystectomy since the first reported case in 1987. (Kaiser et al., 2001).

As technologies evolve, surgeons continue to improve perioperative patient outcomes by introducing various methods to reduce port size and number. This pursuit of "scarless" surgery has given rise to the concept of Natural Orifice Transluminal Surgery (NOTES) and single incision laparoscopic surgery. (Kwan et al., 2010).

Numerous reports have evidenced a lower incidence of postoperative pain, shorter recovery times, and significantly lower mortality and morbidity rates after laparoscopic cholecystectomy compared with open procedures. (Amareshwar Chiruvella et al., 2010).

Correct assessment of biliary anatomy can be documented by photographs showing the "critical view of safety" (CVS) but also by intraoperative cholangiography (IOC). IOC was superior to photographs of the CVS for documentation of the biliary anatomy during laparoscopic cholecystectomy. However, both methods were judged to be

conclusive only for a limited proportion of patients, especially in the case of cholecystitis. This study highlights that documenting assessment of the biliary anatomy is not as straightforward as it seems and that protocols are necessary, especially if the images may be used for medicolegal purposes. (Buddingh et al., 2012).

Timely diagnosis is of paramount importance in complications, such as preventing the life-threatening cholangitis, biliary cirrhosis, portal hypertension, and endstage liver disease, and death. Most BDIs are not recognized at the time of the index operation. (Barauskas et al., 2012).

According to the report of Zvonimir et al., 33% of Bile duct injuries (BDIs) were recognized intraoperatively, and the most common type of iatrogenic BDI was a complete transection, accounting for 42% of cases. (Zvonimir et al., 2003).

The early presentation of BDIs after laparoscopic cholecystectomy is often nonspecific in patients reporting vague abdominal pain, persistent nausea, vomiting, and lowgrade fever. (Barauskas et al., 2012).

Patients who develop delayed symptoms due to a biliary stricture typically present with jaundice cholangitis. Approximately two-thirds (66%) of cases were diagnosed within 10 days after the surgery. Similarly, reported by winslow et al., 51% became evident within the first postoperative week. (winslow et al., 2009).

Imaging studies, such as ultrasonography and

Computerized enhanced computed tomography (CT) scan, and Magnetic Resonant Cholangio Pancreatography (MRCP) studies play an important role in the initial evaluation of patients with suspected BDI. These studies will identify the presence of intraabdominal collections or ascites. In most cases of bile duct transection, Endoscopic Retrograde Cholangio Pancreatography (ERCP) will demonstrate only a normal-sized distal bile duct up to the site of total obstruction; delineation of the proximal anatomy is usually not possible. Percutaneous transhepatic cholangiography or magnetic resonance cholangio- pancreatography is necessary for the proper diagno- sis and staging of the injury. Percutanous Transhepatic Cholangiography (PTC) may sometimes be advantageous not only defining the proximal anatomy, but also allowing the placement of percu taneous biliary catheters to decompress the biliary tree in the presence of cholangitis. (Barauskas et al., 2012).

Biliary complications range from minor ductal leaks, often managed non-operatively, to proximal transactional injuries requiring major biliary and occasionally vascular reconstruction. Several classification methods have been proposed but the Strasberg method remains the most commonly used. (Jawad et al., 2012).

The stenosis of bile duct is a complication that often may cause disastrous consequences, such as biliary cirrhosis, liver failure and, ultimately, death. (Linhares BL et al., 2011).

Ultrasonography (US) and (CT) cannot reliably distinguish bile from other postoperative fluid collections. Magnetic resonance imaging (MRI) with hepatobiliary MRCP provide anatomic and functional agents and information that allows for prompt diagnosis and excludes any other concomitant complications. (Francesco Mungail et al., 2013).

The management of patients with Intrahepatic Bile Duct Injuries (IBDI) is quite complex, requiring the skills of experienced hepatobiliary surgeons and specialized tertiary care services in the treatment of this type of injury. (Linhares et al., 2011).

Endoscopic techniques are recommended as initial treatment of IBDI. When endoscopic treatment is not effective, surgery is considered. Different surgical biliary reconstructions are performed in most patients in IBDI. Roux-Y hepaticojejunostomy is the commonest biliary reconstruction for IBDI. In some patients with complex IBDI, hepatectomy is required. (Jablońska, 2013).

The prognosis is directly related to the patient's underlying conditions, as well as the time elapsed between the lesion and its identification and treatment. (Linhares et al., 2011).

AIM OF THE WORK

The objective of this essay is to: Highlights on iatrogenic bile duct injury with focusing on laparoscopic cholecystectomy resulting injuries.

Chapter(1):

Embryological and Surgical Anatomy of the Intrahepatic and Extrahepatic Biliary Tree

1.1. Normal Development of the Liver and Biliary Tract

The hepatobiliary system develops during the second half of the eighth week of the embryonic stage of development, known as the *organogenetic period*. (*Moore and Persaud*, 2003).

Many of the anatomic variations of the system are the consequences of occurrences during this period. (*Wind*, 2000).

On approximately the 22nd day, a small endodermal thickening, the *hepaticplate*, appears in the endodermal lining of the caudal part of the foregut, adjacent to the transverse septum. (*Larsen*, 2001).

This outgrowth, the hepatic diverticulum, or liver bud, consists of rapidly proliferating cells that penetrate the septum transversum, that is, the mesodermal plate between the pericardial cavity and the stalk of the yolk sac. (Sadler, 2009).

On the 25th-26th day, the plate begins to proliferate and invaginates into the caudal region of the septum between the right and left venous returns, forming the *hepatic diverticulum* (*liver bud*), The initially bulbous "head" of the larger cranial part of the diverticulum bears the cells that