

A NEW GRAPHICAL METHODOLOGY FOR THE DESIGN OF HEAT RECOVERY SYSTEMS IN CHEMICAL/ REFINING INDUSTRIES

By

Dina Ahmed Mohamed Kamel

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
DOCTOR OF PHILOSOPHY
in
Chemical Engineering

A NEW GRAPHICAL METHODOLOGY FOR THE DESIGN OF HEAT RECOVERY SYSTEMS IN CHEMICAL/ REFINING INDUSTRIES

By Dina Ahmed Mohamed Kamel

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
DOCTOR OF PHILOSOPHY
in
Chemical Engineering

Under the Supervision of

Prof. Dr. Fatma El Zahraa Hanafy

Ashour	•
Professor of Chemical Engineering	Associate Professor
Chemical Engineering Department	Chemical Engineering Department

Chemical Engineering Department
Faculty of Engineering, Cairo University

Chemical Engineering Department
Faculty of Engineering, British University
in Egypt

Dr. Mamdouh Avad Gadalla

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2016

A NEW GRAPHICAL METHODOLOGY FOR THE DESIGN OF HEAT RECOVERY SYSTEMS IN CHEMICAL/ REFINING **INDUSTRIES**

By Dina Ahmed Mohamed Kamel

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY in **Chemical Engineering**

Approved by the **Examining Committee**

Prof. Dr. Fatma El Zahraa Hanafy Ashour

Dr. Mamdouh Ayad Gadalla

Prof. Dr. Mahmoud A. El Rifai

Prof. Dr. Mahmoud Mokhtar El Halwagi

Texas A&M University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2016

Engineer's Name: Dina Ahmed Mohamed Kamel

Date of Birth: 27/07/ 1987 **Nationality:** Egyptian

E-mail: Dina.ahmed@bue.edu.eg

Phone: 01001819010

Address: Villa 73, 1st district east, El Sherouk

City, Cairo

Registration Date: 01/10/2012 **Awarding Date:** 01/10/2016

Degree: Doctor of Philosophy **Department:** Chemical Engineering

Supervisors:

Prof. Fatma El Zahraa Hanafy Ashour

Dr. Mamdouh Ayad Gadalla (British University in

Egypt)

Examiners:

Prof Mahmoud Mokhtar El Halwagi (Texas A&M

University)

Prof. Mahmoud Abdel Hakim El Rifai Prof. Fatma El Zahraa Hanafy Ashour

Dr. Mamdouh Ayad Gadalla (British University in

Egypt)

Title of Thesis:

A new graphical methodology for the design of heat recovery systems in chemical/refining industries

Key Words:

Graphical revamping, Heat exchanger network, Energy saving, Grassroots design, Pinch analysis

Summary:

This thesis proposes a new graphical methodology for the grassroots and the revamping of heat exchanger networks. The new graphical technique is based on pinch analysis rules. The energy analysis of exchanger networks is represented on a simple graph of temperature driving forces (TDF) across exchangers plotted versus the temperature of cold streams entering/leaving the exchangers. Accounting for temperature driving forces within the graphical technique is an important factor in both revamping and new design phases since TDF is strongly related to heat transfer rates and exchanger areas. Thus, such a consideration impacts capital costs and consequently overall expenses. For heat recovery systems, exchanger units are represented as straight lines whose y-axis values describe TDF, while the x-axis values give the cold stream temperatures. Length and location of exchanger lines in a network are significant in design. With a systematic procedure, TDF graphs are employed to generate new designs of exchanger networks and also to modify existing ones for better performances.

Insert photo here

Acknowledgments

No words can describe my happiness and gratitude for finishing my PhD thesis after a lot of hard work.

Firstly, I would like to express my sincere gratitude to the best supervisors Dr. Mamdouh, and Prof. Fatma for the continuous support on my PhD study and related research, for their patience, motivation, and immense knowledge. Their guidance helped me in all the time of research and writing of this thesis.

My sincere thanks also go to my mother, who stood beside me and supported me in every life decision, and my father for supporting me throughout writing this thesis and my life in general.

Last but not the least; I would like to thank my husband and friend for his precious support, encouragement and understanding.

Table of Contents

ACKNOWLE	EDGMENTS	I
TABLE OF C	CONTENTS	II
LIST OF TAI	BLES	V
LIST OF FIG	GURES	VI
NOMENCLA	ATURE	VIII
ABSTRACT.		X
CHAPTER 1	: INTRODUCTION	1
1.1.	GRASSROOTS DESIGN OF NEW HENS	1
1.2.	REVAMPING OF EXISTING HENS	2
1.3.	MOTIVATION OF WORK	3
1.4.	THESIS OVERVIEW	
CHAPTER 2	: LITERATURE REVIEW	5
2.1.	Introduction	5
2.2.	CHALLENGES TO REFINERIES/CHEMICAL PLANTS	5
2.3.	PROCESS INTEGRATION USING PINCH ANALYSIS	
2.3.1.	The Composite curves (CCs)	
2.3.2.	Heat cascade	
2.3.3.	The Grand composite curve	12
2.3.4.	The Grid Diagram	13
2.3.5.	Heat Exchanger's Minimum Number	14
2.3.6.	Design of the network	15
2.3.7.	The Pinch design method	15
2.3.8.	Stream splitting strategy	16
2.3.9.	The parameters affecting network design	17
2.3.10.	Numerical methods for obtaining energy targets	19
2.4.	GRASSROOTS DESIGN OF HEN	21
2.4.1.	HEN grassroots design stages [23]	21
2.5.	REVAMPING OF HEN	24
2.6.	ANALYSIS OF HEN	27
2.7.	LIMITATIONS OF PREVIOUS APPROACHES	28
2.8.	ECONOMIC DATA	28
CHAPTER 3	: NEW TEMPERATURE – DRIVING FORCE (TDI	F)
	L APPROACH	•
3.1.	INTRODUCING THE NEW APPROACH	30
3.1.1.	Representation of each point on the graph	
3.1.2.	The slope of heat exchanger in TDF graph	
3 1 2 1	Different clone scenerios	32

3.1.3.	The length of heat exchanger in TDF	34
3.1.4.	Different regions in TDF	34
3.1.5.	Visual analysis of exchangers locations	35
3.1.6.	Relocating exchangers in TDF	36
3.1.7.	Graphical identification of Utility Paths	37
3.1.8.	Graphical identification of Loops	
3.1.9.	Stream splitting on TDF graph	39
3.2.	ADVANTAGES OF THE NEW GRAPHICAL APPROACH	40
3.2.1.	Advantages in analysis and revamping of existing HEN	40
3.2.2.	Advantages in design of new HEN	
CHAPTER 4	:APPLICATIONS OF THE NEW APPROACH	44
4.1.	GRAPHICAL ENERGY ANALYSIS OF EXISTING HENS	44
4.2.	GRAPHICAL REVAMPING OF EXISTING HENS	
4.2.1.	Procedures for graphical revamping	
4.3.	GRAPHICAL DESIGN OF NEW HENS	
4.3.1.	Procedure for graphical design	
4.3.2.	Insights for selecting the optimum area matches	
	: CASE STUDIES DATA	
5.1.	Case study 1: MIDOR refinery	
5.1.1.	Existing unit description	59
5.2.	CASE STUDY 2: LOW – TEMPERATURE DISTILLATION PROC	ESS . 62
5.2.1.	Process description	62
5.3.	CASE STUDY 3: INDUSTRIAL CHEMICAL PROCESS	63
5.3.1.	Hot end design	64
5.3.2.	Cold end design	65
5.3.3.	Complete design of the HEN	66
5.4.	CASE STUDY 4: HEAT EXCHANGER NETWORK FOR A REFOR	RMER67
CHAPTER 6	: RESULTS AND DISCUSSION	70
6.1.	CASE STUDY 1: MIDOR REFINERY	70
6.1.1.	Graphical energy analysis of MIDOR	70
6.1.1.1.	Graphical interpretation of energy inefficiencies	71
6.1.2.	Graphical revamping of existing HEN	
6.1.3.	Revamping of coolers existing within a utility path	
6.1.4.	Revamping with structural modifications	78
6.2.	CASE STUDY 2: LOW-TEMPERATURE DISTILLATION PROCE	ss83
6.2.1.	Graphical design of HEN	
6.2.1.1.	Graphical design below the pinch	
6.2.1.2. 6.2.2.	Graphical design above the pinch	
6.2.3.	HEN design using Aspen energy analyzer Comparison between the two designs	
6.3.	CASE STUDY 3: INDUSTRIAL CHEMICAL PROCESS	
6.3.1.	Graphical design of HEN	
6.3.1.1.	Graphical design of HEN above the pinch	
6.3.1.2.	Graphical design of HEN below pinch	
632	The effect of changing the splitting ratio in the area	

REFERENCE	S	107
CONCLUSIO	NS AND FUTURE WORK	105
	analyzer	103
6.4.1.3	3. Comparison between the graphical design and the design by Asp	en energy
6.4.1.2.	Graphical design of HEN below the pinch	99
6.4.1.1.	Graphical design of HEN above the pinch	98
6.4.1.	Graphical design of HEN	97
6.4.	CASE STUDY 4: HEAT EXCHANGER NETWORK FOR A REFORM	MER97

List of Tables

Table (1.1): Typical ΔT_{min} for various type of process [3]	2
Table (2.1): Approximate ASTM boiling point ranges for crude oil fractions	6
Table (4.1): Streams data	52
Table (4.2): Summary for the HEN	55
Table (5.1): The details of the HEN	61
Table (5.2): Stream data for low temperature process	63
Table (5.3): Stream data for single pinch problem	64
Table (5.4): Details of HEN for PDM above the pinch	64
Table (5.5): Details of HEN for PDM below the pinch	65
Table (5.6): Streams data	67
Table (5.7): The design using the Aspen energy analyzer	68
Table (6.1): Changes in exchangers after revamping	78
Table (6.2): Data for the modified HEN	82
Table (6.3): Summary of the results for the HEN revamping	83
Table (6.4): HEN details for low temperature process	87
Table (6.5): HEN details of energy analyzer design	90
Table (6.6): Comparison between results of different design methods	90
Table (6.7): Details of HEN above the pinch	93
Table (6.8): Comparison between different design scenarios above the pinch	93
Table (6.9): Summery of HEN design below the pinch	95
Table (6.10): Scenarios for HEN design above the pinch	99
Table (6.11): Final HEN data	102
Table (6.12): Comparison between results of case study 4 and energy analyzer	104

List of Figures

Figure (2.1): Flow diagram of atmospheric and vacuum distillation units	7
Figure (2.2): Composite curve	10
Figure (2.3): Optimum ΔT_{min} determination	11
Figure (2.4): Heat cascade	12
Figure (2.5): Grand composite curve	13
Figure (2.6): Grid diagram	14
Figure (2.7): Examples for stream splitting	17
Figure (2.8): Utility loops representation	
Figure (2.9): Different utility paths scenarios	19
Figure (2.10): Key steps of design of HEN according to pinch technology	
Figure (3.1): Graphical representations of the main lines in the new approach.	
Figure (3.2): Temperature profile through a counter current heat exchanger	30
Figure (3.3): Locus of every point in the graph	
Figure (3.4): Graphical representation of a single heat exchanger	32
Figure (3.5): Different slope scenarios	
Figure (3.6): Graphical representation of feasible regions for heat integration	35
Figure (3.7): Different positions for heat exchangers	
Figure (3.8): Relation between the area of a heat exchanger and its position	
Figure (3.9): Graphical representation of utility paths	
Figure (3.10): Graphical representation of loops	38
Figure (3.11): Stream splitting below the pinch	
Figure (3.12): Graphical splitting of a cold stream below the pinch	40
Figure (3.13): TDF of a typical HEN	
Figure (3.14): Graphical representation of different matches	42
Figure (3.15): Better matches 'selection	
Figure (4.1): Grid diagram from a literature problem	44
Figure (4.2): TDF graph for the HEN	
Figure (4.3): Hypothetical TDF of HEN	
Figure (4.4): Graphical determination of maximum target hot temperature	47
Figure (4.5): Modified heat exchanger	
Figure (4.6): Misallocated cooler's position	
Figure (4.7): Addition of a new heat exchanger before the existing exchanger.	49
Figure (4.8): Addition of a new exchanger after the existing exchanger	50
Figure (4.9): Algorithm for the complete steps of graphical revamping	
Figure (4.10): A plot for all process streams	
Figure (4.11): Steps for HEN design above the pinch	53
Figure (4.12): Steps for HEN design below the pinch	
Figure (4.13): Selection of exchanger matches regarding the starting point	
Figure (4.14): Selection of exchanger matches regarding the slopes	
Figure (4.15): Selection of exchanger matches regarding the duties	
Figure (5.1): The configuration of the crude distillation unit	
Figure (5.2): The existing HEN	
Figure (5.3): A low temperature distillation process [6]	
Figure (5.4): Grid diagram for the HEN design above the pinch	
Figure (5.5): Grid diagram for the HEN design below the pinch	
Figure (5.6): Grid diagram for the overall HEN design	

Figure (5.7): Design using Aspen energy analyzer	68
Figure (6.1): TDF of the existing HEN	71
Figure (6.2): The optimum positions of coolers and heaters	72
Figure (6.3): The existing utility paths in the HEN	
Figure (6.4): Determination of the new starting point of modified E1	74
Figure (6.5): Graphical presentation of the modified exchanger E1	
Figure (6.6): Graphical determination of the new starting point of modified E4	.76
Figure (6.7): The modified exchanger E4 and modified C1	76
Figure (6.8): Determination of the new starting point of modified E13	77
Figure (6.9): Graphical presentation of the modified exchanger E13	78
Figure (6.10): The new exchanger's available heat recovery area	79
Figure (6.11): Graphical representation of the new exchanger after E13	80
Figure (6.12): TDF for the modified HEN	
Figure (6.13): Grid diagram for the modified HEN	81
Figure (6.14): Graphical representation for process streams for case study 2	84
Figure (6.15): HEN design below the pinch	85
Figure (6.16): HEN design above the pinch	
Figure (6.17): Overall TDF design representation for case study 2	87
Figure (6.18): Grid diagram for case study 2 HEN	88
Figure (6.19): Aspen energy analyzer suggested design	
Figure (6.20): TDF representation for case study 3	91
Figure (6.21): HEN design above the pinch	
Figure (6.22): HEN design below pinch	94
Figure (6.23): Overall HEN using TDF	
Figure (6.24): Grid diagram for overall HEN	
Figure (6.25): Effect of the splitting ratio on the area	
Figure (6.26): TDF representation for case study 4 data	
Figure (6.27): Graphical design of HEN above the pinch	99
Figure (6.28): Splitting of stream C6	
Figure (6.29): The two scenarios for exchanger E5	
Figure (6.30): Different scenarios for exchanger (E8)	
Figure (6.31): HEN design below the pinch	102
Figure (6.32): Grid diagram for HEN	103

Nomenclature

 ΔT : temperature driving force of exchanger (°C, K)

 ΔT_c : temperature difference of cold stream (°C, K)

 ΔT_{ce} : cold end temperature driving force (°C, K)

 ΔT_h : temperature difference of hot stream (°C, K)

 ΔT_{he} : hot end temperature driving force (°C, K)

 ΔT_{min} : minimum temperature approach difference (°C, K)

C: cold stream

CP_c: heat capacity flow for cold stream (kJ/s·°C)

Cp_c: specific heat of cold stream (kJ/kg·°C)

 CP_h : heat capacity flow for hot stream (kJ/s·°C)

Cp_h: specific heat of hot stream (kJ/kg·°C)

H: hot stream

HEN: heat exchanger network

L: length of exchanger line (m)

mc: mass flow rate of cold stream (kg/s)

mh: mass flow rate of hot stream (kg/s)

PA: pinch analysis

PDM: pinch design methods

Q: heat duty or flow

T_c: temperature of process cold stream (°C)

T_{ci}: intermediate cold temperature (°C)

T_{cp}: cold pinch temperature (°C)

 $T_{cs}\!\!:$ temperature of inlet cold stream to exchangers (°C)

 T_{ct} : temperature of outlet cold stream from exchangers (°C)

 T_h : temperature of process hot stream (°C)

 T_{hp} : hot pinch temperature (°C)

 T_{hs} : temperature of inlet hot stream to exchangers (°C)

 T_{ht} : temperature of outlet hot stream from exchangers (°C)

Abstract

Chemical processes are energy-intensive industry; the majority of energy consumed in industrial processes is mainly used for heating and cooling requirements. This results in increasing the interest in obtaining the optimum design of the heat exchanger networks to reduce the energy consumption and face the growing energy crises.

Most of the published literature over the last fifty years promotes the process integration technology as a main part of the process system engineering science. Heat integration using pinch analysis is a systematic technique for identifying the heat recovery opportunities for heat exchangers in complex processes, and also for the design of thermally efficient systems by obtaining the targets of the process. The energy targets of the process were calculated graphically by the composite curves, or numerically by problem table algorithm. Graphical pinch analysis method normally includes two key steps; firstly, obtaining the energy targets which include the minimum energy required for the HEN design, then designing the heat exchanger network (HEN).

The refining process is an energy-intensive industry, consuming most of the energy in heating and cooling equipment. Revamping or retrofitting of existing refineries is an appropriate opportunity for improving actual energy efficiencies and thus enhancing the performance of the existing HENs. Revamping is commonly used to modify the existing process for many objectives, such as saving energy, reducing environmental emissions and increasing the productivity of the plant. Many researchers dedicated their work to developing and improving the revamping methodologies. Process integration using pinch analysis principles is very popular and is used to revamp existing heat exchanger networks by maximizing the use of the existing hot and cold streams as well as minimizing the external utilities' requirements.

This thesis introduces a new graphical approach for the design of new heat exchanger networks (HENs) and the revamping of existing heat exchanger networks based on pinch analysis rules. The HEN is represented on a simple graph, where the cold stream temperatures are plotted on the X-axis while the driving forces for each exchanger are plotted on the Y-axis.

This graphical technique can describe the energy analysis problems in terms of temperature driving force inside the heat exchanger, which is an important factor in the revamping process as the differences in these driving forces are involved in calculating the area of heat exchangers, and consequently, affecting the cost. Also, each exchanger is represented in this graph as a straight line with a slope related to the heat capacity flows and length function of the heat duty. The graphical representation only requires very simple data that are readily available in every refinery site. Such data include temperatures of process streams, feed flows, and heat duties.

The new graphical representation is simple to use and needs no simulation tools or software packages to perform revamping calculations and is considered valuable for conceptual applications.

The temperature driving force's new representation is applied to four case studies for different objectives. In the revamping of an existing HEN in an Egyptian refinery (MIDOR) to boost its energy efficiency, the graphical

revamping in application on the HEN shows savings of approximately 10% in the energy demand with minor structural modifications. Also, the new graphical approach is applied for the design of the new HENs for several objectives such as the design with optimum area, optimum energy and optimum cost.