

Assessment of Immature Platelet Fraction in Pregnancy-Associated Thrombotic Microangiopathy

Thesis

Submitted for Partial Fulfillment of Master Degree in Clinical and Chemical Pathology

By Mary Zakaria Fayek

M.B, B.Ch.

Misr University for Science and Technology (MUST)

Under Supervision of

Prof. Dr. Mohamed Ameen Mekawy

Professor of Clinical and Chemical Pathology Faculty of Medicine- Ain-Shams University

Dr. Rasha Abd El-Rahman El-Gamal

Lecturer of Clinical and Chemical Pathology Faculty of Medicine- Ain-Shams University

Dr. Ayman Abd Elkader Mohamed

Lecturer of Obstetrics and Gynecology Faculty of Medicine- Ain -Shams University

> Faculty of Medicine Ain Shams University 2016

Thanks to **LORD** for helping me to fulfill this study and for all **HIS** blessings in my life.

I would like to express my deepest appreciation and thanks to **Professor. Mohamed Ameen Mekawy,** Professor of Clinical and Chemical Pathology, Faculty of medicine, Ain Shams University, for his valuable cooperation, devoting much of his time and supports to accomplish this work.

I want to thank Dr. Rasha Abd El-Rahman El-Gamal, Lecturer of Clinical and Chemical Pathology, Faculty of medicine, Ain Shams University for her advice, cooperation and sincere guidance throughout this work.

I want to thank **Dr. Ayman Abd Elkader Mohamed,** Lecturer of Obstetrics and Gynecology,
Faculty of medicine, Ain Shams University for his
cooperation throughout the practical work.

I would like to thank my beloved husband John for his presence in my life. I would have never been here without your support and under-standing.

I love to thank **Mum and Dad** who has always been my backbone. Without their support, I would have never reached this achievement

I would like to thank my sisters for their loving and encouraging words they always give me.

To the sweet memory of my grandmother, who deserves to be unforgettable.

Finally it's my pleasure to dedicate this study and all my success in life to my sons, **David and Daniel**, the apple of my eyes.

Tist of Contents

Subject	Page No.
List of Abbreviations	I
List of Tables	II
List of Figure	VI
Introduction	1
Aim of the Work	5
Chapter (1): Syndromes of microangiopathy	Thrombotic6
Chapter (2): Platelets and immature	platelet fraction50
Patients and Methods	67
Results	74
Discussion	121
Summary and Conclusion	128
Recommendations	132
References	133
Arabic Summary	

Tist of Abbreviations

AA	Aplastic Anaemia
BF	Complement factor B
CFH	Complement factor H
CT	Computed tomography
DIC	Disseminated intravascular coagulation
ECG	Electrocardiograms
ELISA	Enzyme linked immunosorbent assay
IF	Factor I
FFP	Fresh frozen plasma
GPVI	Glycoprotein VI
HUS	Haemolytic Uraemic Syndrome
HELLP	Hemolysis with elevated liver enzyme and low
	platelet count
HIT	Heparin-induced thrombocytopenia
HIV	Human immunodeficiency virus
HLA	Human leukocyte antigen
ITP	Idiopathic thrombocytopenic purpura
IPF	Immature platelet fraction
LDH	Lactic dehydrogenase
MRI	Magnetic resonance imaging
MPV	Mean platelet volume
MKs	Megakaryocytes
MCP	Membrane cofactor protein
PNH	Paroxysmal nocturnal haemoglobinuria
PDW	Platelet Distribution Width
P-LCR	Platelet Large Cell Ratio
PCT	Platelet-crit
PE	Pre-eclampsia
PFGE	Pulsed-field gel electrophoresis
sFlt-1	Soluble fms-like tyrosine kinase 1
SLE	Systemic lupus erythematosis
TPO	Thrombopoietin
TMA	Thrombotic microangiopathy
TTP	Thrombotic thrombocytopenic purpura
vWF	von Willebrand factor

Tist of Tables

Table	Title	Page
1	Types of TMA	6
2	Differential diagnosis between TTP and HUS	35
3	Characteristics of patients with SPE/HELLP or TTP/HUS and normal controls	74
4	Hemoglobin level, hematocrit, and schistoctyte count in patients with SPE/HELLP or TTP/HUS and normal controls	75
5	Total platelet count, immature platelet count, and immature platelet fraction in patients with SPE/HELLP or TTP/HUS and normal controls	77
6	Prevalence of a low platelet count, high IPF, or high schistocyte count among patients with SPE/HELLP or TTP/HUS and normal controls	81
7	Receiver-operating characteristic (ROC) curve analysis for discrimination between patients with TTP/HUS or SPE/HELLP using the IPF or schistocyte count	82

Table	Title	Page
	Comparison of the receiver-operating	
	characteristic (ROC) curves for	
8	discrimination between patients with	85
	TTP/HUS or SPE/HELLP using the IPF or	
	schistocyte count	
	Receiver-operating characteristic (ROC)	
0	curve analysis for discrimination between	86
9	patients with TMA and normal controls	80
	using the IPF or schistocyte count	
	Comparison of the receiver-operating	
	characteristic (ROC) curves for	
10	discrimination between patients with	89
	TMA and normal controls using the IPF or	
	schistocyte count	
	Multivariable binary logistic regression	
11	analysis for the relation between the IPF	0.1
11	and TTP/HUS with adjustment for the	91
	confounding effect of the gestational age	
	Multivariable binary logistic regression	
	analysis for the relation between the	
12	schistocyte count and TTP/HUS with	91
	adjustment for the confounding effect of	
	the gestational age	

Table	Title	Page
	Correlation between the IPF and	
	schistocytes count in whole study	
13	population, patients with TMA,	92
	SPE/HELLP, or TTP/HUS, and normal	
	controls	
	Characteristics of patients with	
14	SPE/HELLP or TTP/HUS and normal	95
	controls	
	Hemoglobin level, hematocrit, and	
15	schistoctyte count in patients with	07
15	SPE/HELLP or TTP/HUS and normal	97
	controls	
	Total platelet count, immature platelet	
16	count, and immature platelet fraction in	99
10	patients with SPE/HELLP or TTP/HUS and	99
	normal controls	
	Prevalence of a low platelet count, high	
15	IPF, or high schistocyte count among	102
17	patients with SPE/HELLP or TTP/HUS and	102
	normal controls	
18	Receiver-operating characteristic (ROC)	
	curve analysis for discrimination between	104
	patients with TTP/HUS or SPE/HELLP	104
	using the IPF or schistocytes count	

Table	Title	Page
19	Comparison of ROC curves for discrimination between patients with TTP/HUS or SPE/HELLP using the IPF or schistocyte count	107
20	ROC curve analysis for discrimination between patients with TMA and normal controls using the IPF or schistocyte count	109
21	ROC curves for discrimination between patients with TMA and normal controls using the IPF or schistocyte count	112
22	Correlation between the IPF and schistocytes count in whole study population, patients with TMA, SPE/HELLP, or TTP/HUS, and normal controls	113
23	Multivariable binary logistic regression analysis for discrimination between patients with TTP/HUS or SPE/HELLP using the IPF and schistocyte count combined	115
24	Receiver-operating characteristic (ROC) curve derived from the multivariable binary logistic regression model for discrimination between patients with TTP/HUS or SPE/HELLP using the IPF-% and schistocyte count combined	116

Table	Title	Page
	Comparison of the receiver-operating	
	characteristic (ROC) curves for	
25	discrimination between patients with	118
25	TTP/HUS or SPE/HELLP using the IPF,	110
	schistocyte count, or IPF and schistocyte	
	count combined	

List of Figures

Figure	Title	Page
1	Schematic of platelet production	50
2	Algorithm for workup of thrombocytopenia	
	based on observation of the peripheral blood	58
	film	
3	Optical platelet scattergrams	62
4	Box plot showing the schistocyte count in	
	patients with SPE/HELLP or TTP/HUS and	76
	normal controls	
5	Box plot showing the total platelet count in	
	patients with SPE/HELLP or TTP/HUS and	78
	normal controls.	
6	Box plot showing the immature platelet	
	count (IPC) in patients with SPE/HELLP or	79
	TTP/HUS and normal controls	
7	Box plot showing the immature platelet	
	fraction (IPF) in patients with SPE/HELLP or	80
	TTP/HUS and normal controls	
8	Prevalence of a low platelet count, high IPF,	
	or high schistocyte count among the studied	81
	groups	

Figure	Title	Page
9	Receiver-operating characteristic (ROC) curve analysis for discrimination between patients with TTP/HUS or SPE/HELLP using the IPF	83
10	Receiver-operating characteristic (ROC) curve analysis for discrimination between patients with TTP/HUS or SPE/HELLP using the schistocyte count	84
11	Comparison of the receiver-operating characteristic (ROC) curves for discrimination between patients with TTP/HUS or SPE/HELLP using the IPF or schistocyte count	85
12	ROC curve for discrimination between patients with TMA and normal controls using the IPF	87
13	ROC curve for discrimination between patients with TMA and normal controls using the schistocyte count	88
14	ROC curves for discrimination between patients with TMA and normal controls using the IPF or schistocyte count	90

Figure	Title	Page
15	Scatter plot showing the correlation between the IPF and schistocyte count in the whole study population. Fitted lines represent local regression smoothing (LOESS) trend lines	92
16	Scatter plot showing the correlation between the IPF and schistocyte count in patients with TMA or normal controls. Fitted lines represent local regression smoothing (LOESS) trend lines	93
17	Scatter plot showing the correlation between the IPF and schistocyte count in patients with SPE/HELLP or TTP/HUS and normal controls. Fitted lines represent local regression smoothing (LOESS) trend lines	93
18	Box plot showing the schistocyte count in patients with SPE/HELLP or TTP/HUS and normal controls	98
19	Box plot showing the total platelet count in patients with SPE/HELLP or TTP/HUS and normal controls	100
20	Box plot showing the immature platelet count (IPC) in patients with SPE/HELLP or TTP/HUS and normal controls	100

Figure	Title	Page
21	Box plot showing the immature platelet fraction (IPF) in patients with SPE/HELLP or TTP/HUS and normal controls.	101
22	Prevalence of a low platelet count, high IPF, or high schistocyte count among the studied groups	103
23	Receiver-operating characteristic (ROC) curve analysis for discrimination between patients with TTP/HUS or SPE/HELLP using the IPF	105
24	Receiver-operating characteristic (ROC) curve analysis for discrimination between patients with TTP/HUS or SPE/HELLP using the schistocyte count	106
25	Comparison of ROC curves for discrimination between patients with TTP/HUS or SPE/HELLP using the IPF or schistocyte count	108
26	ROC curve for discrimination between patients with TMA and normal controls using the IPF	110

Figure	Title	Page
27	ROC curve for discrimination between patients with TMA and normal controls using the schistocyte count.	111
28	ROC curves for discrimination between patients with TMA and normal controls using the IPF-% or schistocyte count	112
29	Scatter plot showing the correlation between the IPF and schistocyte count in patients with SPE/HELLP or TTP/HUS	114
30	Discrimination between patients with TTP/HUS or SPE/HELLP using IPF-% and schistocyte count combined	117
31	Discrimination between patients with TTP/HUS or SPE/HELLP	119

Introduction

