Early Detection of Left Atrial Dysfunction by Speckle Tracking Echocardiography in Hypertensive Patients with Normal Left Atrial Size

Thesis

Submitted in partial fulfillment of MD degree in Cardiology

By

Bassam Sobhy Kamal Hennawy

M.B.B.CH, MSc Cardiology, Ain Shams University

Under Supervision of

Prof. Dr. Osama Mohamed Hassan

Professor of Cardiology Faculty of Medicine – Ain Shams University

Ass. Prof. Dr. Wael Mahmoud El Kilany

Ass. Professor of Cardiology Faculty of Medicine – Ain Shams University

Dr. Haitham Galal Mohamed

Lecturer of Cardiology
Faculty of Medicine – Ain Shams University

Dr. Ahmed Mohamed Mamdouh

Lecturer of Cardiology
Faculty of Medicine – Ain Shams University

Ain Shams University **2016**

Acknowledgements

First and foremost, I feel always indebted to **God**, the Most Beneficient and Merciful.

My most sincere gratitude is also extended to **Prof. Dr. Osama Mohamed Hassan**, Professor of Cardiology, Faculty of Medicine – Ain Shams University, for his enthusiastic help, continuous supervision, guidance and support throughout this work. I really have the honor to complete this work under his supervision.

Words fail to express my appreciation to **Ass. Prof. Dr. Wael Mahmoud El Kilany,** Assistant Professor of Cardiology,
Faculty of Medicine – Ain Shams University, for his great help,
valuable suggestions and directions throughout the whole work.

I would like also to thank with all gratitude **Dr. Haitham Galal Mohamed,** Lecturer of Cardiology, Faculty of Medicine

– Ain Shams University, for the efforts and time he has devoted to accomplish this work.

I can't forget to thank **Dr. Ahmed Mohamed Mamdouh,** Lecturer of Cardiology, Faculty of Medicine — Ain Shams University, for his great help, close supervision and continuous encouragement throughout the whole thesis.

Last but not least, all thanks to all members of my family, especially my parents and my fiancé for pushing me forward in every step in the journey of my life.

Candidate

Bassam Sobhy Kamal Hennawy

List of Contents

Subject	Page No.
List of Abbreviations	i
List of Tables	iii
List of Figures	iv
Introduction	1
Aim of the Study	13
Review of Literature	
Left Atrium and Hypertension	14
Evaluation of the Left Atrium	31
Speckle Tracking Echocardiography	52
Patients and Methods	89
Results	99
Discussion	112
Conclusions	122
Recommendations and Study Limitations	123
Summary	124
References	126
Appendix	I
Arabic Summary	

List of Abbreviations

Abbr. Full-term **AF** : Atrial fibrillation Erk : Extracellular signal-regulated kinases LA : Left atrium STE : Speckle-tracking echocardiography : Right atrium RA **ANP** : Atrial natriuretic peptide LV: Left ventricle **ECG** : Electrocardiography LV : Left ventricle : Heart failure with normal ejection fraction **HFNEF ACE** : Angiotensin converting enzyme : Angiotensin II Ang-II AP : Antero-posterior **CT** : Computed tomography : Magnetic resonance imaging **MRI 2D** : Two dimensional **LAEDV** : Left atrial end diastolic volume LAESV : Left atrial end systolic volume LAVmin : Minimum LA Volume TDI : Tissue Doppler imaging : Region of interest ROI SR : Strain rate **PCWP** : Pulmonary capillary wedge pressure : Doppler Tissue Imaging DTI

List of Abbreviations (Cont.)

Abbr. Full-term 2D-SI : Two dimensional strain imaging **PALS** : Peak atrial longitudinal strain **PACS** : Peak atrial circumferential strain : Contraction strain index **CSI TPLS** : Time to peak longitudinal strain EAE : European Association of Echocardiography **ASE** : American Society of Echocardiography **3D** : Three-Dimensional : Statistical Package for Social Science **SPSS** LVM : Left ventricular mass LVIDd : Left ventricular internal diastolic diameter **PWTd** : Posterior wall diastolic thickness **IVSTd** : Interventricular septal diastolic thickness LVIDd : Left ventricular internal diastolic diameter ROC : Receiver operating characteristic curve **PALS** : Peak atrial longitudinal strain SD : Standard deviation

List of Tables

Table No	o. Title	Page No.
Table (1):	Comparison between both regarding anthropometric measurisk factors	res and
Table (2):	Comparison between both regarding LV measurements	U 1
Table (3):	Comparison between both regarding LA parameters	U 1
Table (4):	Correlation of global PALS (% different risk factors	′
Table (5):	Correlation of global PALS (%) v studied parameters	

List of Figures

Figure No	. Title	Page	No.
Figure (1):	LA, posterior view		14
Figure (2):	LAA with a thrombus seen inside	it	15
Figure (3):	CT showing LA and pulmonary ve	eins	16
Figure (4):	Bachmann's bundle		17
Figure (5):	Internal structure of the LA		18
Figure (6):	The main 3 functions of the LA		19
Figure (7):	Changes in LA volume and pre- relation to phasic function of the L		
Figure (8):	LA pressure-volume curve		31
Figure (9):	Linear measurements of LA by land 2D echocardiography		
Figure (10):	2D images of LA volume measure	ment	35
Figure (11):	Correlation of LA volume with of LA functions		
Figure (12):	A and B:Transmitral E and A w and D: Pulmonary venous velocity		
Figure (13):	TDI of mitral annulus		44
Figure (14):	Assessment of LA function by cold	or TDI	46
Figure (15):	Estimation of LA volumes and by 3D echocardiography		
Figure (16):	LA volumes assessed by echocardiography		

List of Figures (Cont.)

Figure No	. Title	Page No.
Figure (17):	3D reconstruction of MSCT show and pulmonary veins	_
Figure (18):	MRI assessment of LA size	
Figure (19):	Different types of left ver myocardial wall strains	
Figure (20):	Rotation of left ventricular apex a during the heart cycle	
Figure (21):	(a) Different forms of myodeformation (b) Strain and stracurves	in rate
Figure (22):	LA strain and strain rate curves	61
Figure (23):	Comparison of peak atrial long strain in a healthy subject and one with atrial fibrillation	patient
Figure (24):	LA strain measured by TDI	66
Figure (25):	Displacement of acoustic market frame to frame	
Figure (26):	LA wall as tracked to measure LA s	strain 71
Figure (27):	Left atrial deformation (strain) by tracking.	•
Figure (28):	LV strain measured by speckle track	king75
Figure (29):	Segmental traces of LA strain and strain. Yellow arrow indicates peak	_

List of Figures (Cont.)

Figure No	. Title	Page No.
Figure (30):	Measurement of peak atrial long strain (PALS) and time to longitudinal strain (TPLS)	peak
Figure (31):	Peak atrial longitudinal strain (PAI peak atrial contraction strain (PAI representative subject	CS) in a
Figure (32):	Peak atrial longitudinal strain measurin a healthy subject	
Figure (33):	LV volumes and strain measured speckle tracking	•
Figure (34):	LA volume measured in apical 4 c view	
Figure (35):	LA longitudinal strain measured fr of our patients	
Figure (36):	LVEF measured by modified Sir rule	-
Figure (37):	LV diastolic function assessed by inflow and TDI	
Figure (38):	Comparison between both regarding LV diastolic function	
Figure (39):	Correlation of global PALS with D	M 105
Figure (40):	Correlation of global PALS w diastolic dysfunction	
Figure (41):	Correlation of global PALS with ag	ge 108
Figure (42):	Correlation of global PALS with S	BP 108

List of Figures (Cont.)

Figure No	. Title	Page No.
Figure (43):	Correlation of global PALS with	BMI 109
Figure (44):	Correlation of global PALS volume index	
Figure (45):	Correlation of global PALS expansion index	
Figure (46):	Correlation of global PALS with index	
Figure (47):	ROC curve for global PALS	111

Protocol

Introduction

Arterial hypertension is associated with morphologic and functional left atrial (LA) abnormalities. An increase in LA size in patients with hypertension is a common finding in clinical practice, and the mechanisms underlying this enlargement have been extensively analyzed. (1-3)

An impact of hypertension on LA function has been shown as well, using methods based on two-dimensional echocardiographic measurements of LA volumes, standard Doppler imaging of transmitral and pulmonary vein flow, and Doppler tissue imaging of LA myocardial wall motion. (4,5) However, these approaches are limited by a number of shortcomings, including the need for geometric assumptions, suboptimal

reproducibility, and technical limitations common to all Doppler-based techniques. (6,7)

Moreover, most of studies included patients regardless of LA size. This raises the question of whether LA dysfunction in patients with hypertension may be detected in the absence of LA enlargement.

This question may be of clinical interest, because LA size is often used as a surrogate marker of LA function in clinical practice. (8)

Also, LA enlargement and dysfunction are considered risk factors for development of atrial fibrillation and cerebrovascular strokes in hypertensive patients. (9,10)

Speckle-tracking echocardiography (STE) allows direct and angle-independent analysis of myocardial deformation, thus providing sensitive and reproducible indices of myocardial fiber dysfunction that overcome

most of the limitations of Doppler-derived strain measures. (11,12)

The assessment of LA strain dynamics by STE in hypertensive patients may be of particular interest in those with no evidence of LA enlargement, because it may provide additional information for the early detection of LA abnormalities. (13,14)

Aim of the study

The aim of this study is early detection of left atrial dysfunction by speckle tracking echocardiography in hypertensive patients with normal left atrial size.