
MINI-IMPLANTS FOR "EN MASSE" MAXILLARY ANTERIOR TEETH RETRACTION: A CLINICAL STUDY

A Thesis submitted to the Faculty of Oral and Dental Medicine, Cairo University in partial fulfilment of the requirements For the Master's Degree of Clinical Dental Science (Orthodontics)

BY

HANEM YOUNES EL-FEKY B.D.S (Cairo University)

FACULTY OF ORAL AND DENTAL MEDICINE CAIRO UNIVERSITY


```
" "
```

SUPERVISORS

Prof. Mohamed Amgad Fatthy Kaddah *Professor of Orthodontics, *Faculty of Oral and Dental Medicine *Cairo University*

Prof. Manal Yehia Foda

Professor of Orthodontics,

Faculty of Oral and Dental Medicine,

Cairo University

I dedicate this to:

My beloved Mother,

The soul of my father

All my wonderful family

ACKNOWLEDGEMENT

I would like to express my deepest appreciation and gratitude to **Prof. Mohamed Amgad Fatthy Kaddah**, Professor of Orthodontics, Faculty of Oral and Dental Medicine, Cairo University, for his unfailing interest, untiring help, instructive criticism, keen supervision and support.

My deepest appreciation to **Dr. Manal Yehia Foda**, Professor of Orthodontics, Faculty of Oral and Dental Medicine, Cairo University, for her scrupulous supervision, unlimited help, valuable advice, spiritual support and encouragement.

My sincere appreciation to **Dr. Amr Ragab Radwan El-Beialy**, assistant lecturer of Orthodontics, Faculty of Oral and Dental Medicine, Cairo University, for his vast assistance and innovative effort during this work

Lastly, the warmest thanks are due to everyone who directly or indirectly has given a hand during the research and preparation of the thesis to put it in its final form.

CONTENTS

•	List of Tables	i
•	List of Figures	iii
•	Introduction	1
•	Review of Literature	3
•	Aim of the study	44
•	Material and Methods	45
•	Results	73
•	Discussion	97
•	Summary & Conclusions	107
•	References	110
•	Appendices	123
•	Arabic summary	

List of Tables

		Page
Table (1):	Paired t-test for comparison between pre- and post-	
	operative angular cast measurements	79
Table (2):	Paired t-test for comparison between pre- and post-	
	operative linear cast measurements	80
Table (3):	Paired t-test for comparison between pre- and post-	
	operative cephalometric angular skeletal measurements	83
Table (4):	Paired t-test for comparison between pre- and post-	
	operative cephalometric linear skeletal measurements	84
Table (5):	Paired t-test for comparison between pre- and post-	
` '	operative cephalometric angular dental measurements	87
Table (6):	Paired t-test for comparison between pre- and post-	
	operative cephalometric linear dental measurements	88
Table (7):	Paired t-test for comparison between pre- and post-	
14010 (7).	operative cephalometric angular soft tissue	
	measurements	90
Table (8):	Paired t-test for comparison between pre- and post-	
14010 (0).	operative cephalometric linear soft tissue measurements	91
T 11 (0)		
Table (9):	The intra and inter observer errors of the angular and	
	linear cast measurements	93

		Page
Table (10):	The intra and inter observer errors of the cephalometric angular and linear skeletal measurements.	94
Table (11):	The intra and inter observer errors of the cephalometric angular and linear dental measurements	95
Table (12):	The intra and inter observer errors of the cephalometric angular and linear soft tissue measurements	96
Table (13):	Descriptive statistics for the angular and linear cast measurements before treatment	135
Table (14):	Descriptive statistics for the angular and linear cast measurements after treatment.	136
Table (15):	Descriptive statistics for the cephalometric angular and linear skeletal measurements before treatment	137
Table (16):	Descriptive statistics for the cephalometric angular and linear skeletal measurements after treatment	138
Table (17):	Descriptive statistics for the cephalometric angular and linear dental measurements before treatment	139
Table (18):	Descriptive statistics for the cephalometric angular and linear dental measurements after treatment	140
Table (19):	Descriptive statistics for the cephalometric angular and linear soft tissue measurements before treatment	141
Table (20):	Descriptive statistics for the cephalometric angular and linear soft tissue measurements after treatment	142

List of Figures

Fig. (1):	A facial photograph for a subject suffering from class II
	division 1 malocclusion before treatment:
	a. Frontal view at rest
	b. Frontal view with smile
	c. Profile view
Fig. (2):	An Intraoral photograph showing class II division 1
	malocclusion before treatment:
	a. Frontal view in occlusion
	b. Left side view in occlusion
	c. Right side view in occlusion
	d. Occlusal view of maxillary arch
Fig. (3):	A drawing to illustrate dental cast landmarks with lines
	used for the Linear measurements
Fig. (4):	A drawing to illustrate dental cast landmarks with lines
	used for the angular measurements
Fig. (5):	A photograph of panoramic radiograph for a subject
	suffers from class II division 1 malocclusion before
	treatment
Fig. (6):	A photograph of Lateral cephalometric radiograph for a
	subject suffers from class II division 1 malocclusion
	before treatment
Fig. (7):	A tracing of lateral cephalometric view showing the
	angular skeletal measurements
Fig. (8):	A tracing of lateral cephalometric view showing the
	linear skeletal measurements

		Page
Fig. (9):	A tracing of lateral cephalometric view showing the	
	linear and angular dental measurements	61
Fig. (10):	A tracing of lateral cephalometric view showing the	
	linear and angular soft tissue measurements	63
Fig. (11):	Mini-screw kit including mini-screw driver and package	65
Fig. (12):	Photographs showing the mini-screw	65
Fig. (13):	Photographs showing the aiming device placed at the	
	preestimated site of the miniscrew	69
Fig. (14):	Photograph showing the force gauge	69
Fig. (15):	Force system involved: Net force; intrusive force,	
	retractive Force	70
Fig. (16):	Frontal view showing closed Ni-Ti coil spring stretched	
	between the hooks and the mini-screws	70
Fig. (17):	Closed Ni-Ti coil spring stretched between the hook and	
	the mini-screw at the left side	71
Fig. (18):	Photographs showing the L shape wire placed in the	
	right and left upper first molars	71
Fig. (19):	Photograph showing implanted miniscrew near the	
	mucogingival line	74
Fig. (20):	Photograph showing a subject with increased overjet	
	and overbite before treatment	74
Fig. (21):	Photograph showing the same subject with improved	
	the overjet and the overbite after treatment	74
Fig. (22):	Photograph showing profile view of a subject before	
	Treatment	75

		Page
Fig. (23):	Photograph showing profile view of the same subject	
	after Treatment	75
Fig. (24):	Photograph showing profile view of another subject	
	before treatment	76
Fig. (25):	Photograph showing profile view of the same subject	
	after treatment.	76
Fig. (26):	Photograph showing a subject with class Π canine	
	relation before treatment	77
Fig. (27):	Photograph showing the same subject with class I	
	canine relation after treatment	77
Fig. (28):	A bar graph illustrating pre- and post-operative changes	
	in the angular cast measurements	79
Fig. (29):	A bar graph illustrating pre- and post-operative changes	
	in the linear cast measurements	80
Fig. (30):	A bar graph illustrating pre- and post-operative changes	
	in the angular skeletal measurements	83
Fig. (31):	A bar graph illustrating pre- and post-operative changes	
	in the linear skeletal measurements	84
Fig. (32):	A bar graph illustrating pre- and post-operative changes	
	in the angular dental measurements	87
Fig. (33):	A bar graph illustrating pre- and post-operative changes	
	in the linear dental measurements	88
Fig. (34):	A bar graph illustrating pre- and post-operative changes	
	in the angular soft tissue measurements	90
Fig. (35):	A bar graph illustrating pre- and post-operative changes	
	in the linear soft tissue measurements	91

INTRODUCTION

Class II malocclusions cause esthetic and functional problems as well as psychological problems of varying intensity. They depend on the amount of anterior-posterior discrepancy and its interaction with the related soft tissue structures. Treatment for the Class II malocclusions in nongrowing patients usually involves selective removal of permanent teeth.

On retracting anterior teeth, anchorage control assumes profound importance because maintaining the posterior segment in place becomes very critical. A loss in molar anchorage cannot only compromise correction of the anterior-posterior discrepancy, but can also affect the overall vertical dimension of the face.

The en masse retraction of the upper anterior teeth has always been a popular option in the treatment of the maxillary protrusion cases, with the shortened treatment time being its main advantage. It allows the extraction space to be closed in a single step. However, the anchorage requirement for the en masse retraction is much greater than that for the two step retraction.

Throughout the literature, several methods have been described to accomplish distal movement of anterior teeth after premolar extraction without losing posterior anchorage. Molar buccal torque, multiple teeth at anchorage segment and application of light forces are commonly used. Many appliances including Nance holding arch, palatal bar and extraoral appliances have been designed for anchorage reinforcement. Although headgear has proved to be the best source of anchorage, still patient's

compliance, undesirable side effects on the maxillary complex and the risk of injuries have jeopardized its success.

Because any dental anchorage would to a certain degree result in unwanted movement of the anchor teeth, devices have been developed that do not use teeth as the anchorage unit. The growing demand for minimum compliance and maximum curative effects has made the temporary anchorage device (TAD) more promising as an excellent alternative to traditional orthodontic anchorage.

A temporary anchorage device is a device that is temporarily fixed to bone for the purpose of enhancing orthodontic anchorage either by supporting the teeth of the reactive unit or by obviating the need for the reactive unit altogether, and which is subsequently removed after use. They can be located transosteally, subperiosteally, or endosteally and they can be fixed to bone either mechanically (cortically stabilized) or biochemically (osseointegrated).

The incorporation of dental implants and TADs into orthodontic treatment raises the possibility for infinite anchorage, which has been defined in terms of implants as showing no movement (zero anchorage loss) as a consequence of reaction forces; this opens the gate for the present clinical research.

REVIEW OF LITERATURE

During orthodontic treatment, achieving maximum or absolute anchorage with traditional approaches can be a biomechanical challenge. Orthodontists are accustomed to using teeth and auxiliary appliances, both intraoral and extraoral, to control anchorage. However, these methods are limited because of its difficulty to achieve results commensurate with our idealistic goals without full patient compliance. The search for an ideal anchorage unit has resulted in bone-borne or skeletal anchorage devices that do not rely on patient cooperation, soft tissues or the dentition.

For the sake of clarity, the review of literature will be divided into:

- I- Different methods applied for en masse maxillary anterior teeth retraction.
- **II- Mini-screw implants**
 - A- Aiming devices.
 - **B-** Clinical applications of orthodontic mini-screw implants.
 - C- Success and failure rates.

I- <u>Different methods applied for en masse maxillary anterior teeth</u> retraction.

The one step retraction of the anterior segment, in the treatment of the first premolar extraction cases has been practiced in the Begg and Tipedgewise techniques for many years ³. In a modern edgewise technique, the en masse retraction is first presented by Andrews in 1976 ³, his retraction

method was developed by Bennett and Mclaughlin in 1991⁶ and used routinely in their preadjusted appliance system.

Orton, Slattery and Orton (1992)⁶⁶, described a modified maxillary intrusion splint (M.I.S.) system which was applied as vertical pull headgear for management of severe 'gummy smile' class II division 1 malocclusion and designed to reduce the visibility and vulnerability of the maxillary incisors in this difficult clinical situation by achieving the intrusion of maxillary teeth, restraining maxillary growth and encouraging an element of subsequent forward mandibular rotation. The authors' initial experience using this system was presented in a retrospective cephalometric analysis of the lateral skull films of 26 treated patients contrasted with a similar number of comparable controls. Their results showed that the principal effects of the M.I.S. were on the maxillary teeth giving decisive overjet control and incisor retraction with actual maxillary incisor intrusion. There was a similar effect on the maxillary molar and the M.I.S. provided effective en masse vertical control of the maxillary dentition. There was some degree of maxillary restraint in the M.I.S. group, but no noticeable difference in the change of mandibular position between the groups at the end of treatment.

Bauer et al (1992)⁵, applied their study on 11 patients for the isolated canine retraction, as well as for the en masse retraction, controlled types of movement for the active units and maximum anchorage situations for the passive units produced by the torquing force. Because of these good anchorage conditions space closure could be done without headgear. The level of the anchorage segments was negligibly influenced but in the