

Microemboli as an Etiology of Acute Ischemic Stroke in Watershed zone

Thesis

Submitted for the partial fulfillment of Master Degree in Neuropsychiatry

By

Nouran Mohamed Salah El-Dein

M.B.B.Ch.

Under supervision of

Prof. Ahmed Abd Elmonem Gaber

Professor of Neurology Faculty of Medicine - Ain Shams University

Dr. Hossam El-Din Mahmoud Afify

Lecture of Neurology Faculty of Medicine –Ain Shams University

Dr. Ahmed Mohamed El-Sadek

Lecture of Neurology Faculty of Medicine –Ain Shams University

Faculty of Medicine
Ain Shams University
2016

الصمات المتناهية الصغر كمسبب للسكتة الارتوائية في الصمات المناطق المستجمعة

رسالة

توطئة للحصول على درجة الماجستير في طب المخ والأعصاب والطب النفسي

مقدمة من

الطبيبة/نوران محمد صلاح الدين

بكالوريوس الطب والجراحة العامة ـ جامعة عين

ثىمس

تحت إشراف

أ.د / احمد عبد المنعم جابر

أستاذ طب المخ والأعصاب

كلية الطب-جامعة عين شمس

د /حسام الدين محمود عفيفي

مدرس طب المخ والأعصاب

كلية الطب-جامعة عين شمس

د / أحمد محمد الصادق

مدرس طب المخ والأعصاب

كلية الطب جامعة عين شمس

كلية الطب

جامعة عين شمس

7.17

ACKNOWLED GEMENT

First of all, thanks to Allah

I would like to express and extend my deepest gratitude to Allah the Almighty who has bestowed me with his blessings and strengthened me throughout my research.

I am heartily grateful to my supervisor **Prof. Ahmed Abd Elmonem Gaber** for sharing her pearls of wisdom and expertise together with her unceasing advice and genuine attention.

I am also indebted to **Dr. Hossam El-Din Mahmoud Afify** whose encouragement, guidance and support from the initial to the final level during my residency years and enabled me to develop a thorough understanding to the subject of my thesis, whom without her help, this work would have never been accomplished.

I would like to express my deep gratitude and respect to **Dr. Ahmed El-Sadek,** who deal with me as his young sister, for his great help, expert supervision, valuable advice and sincere support for doing this research.

Many thanks to **Dr. Yousra Abdelzaher,** assistant Lecturer Of radiology, Ain Shams University for her continuous care, scientific support and valuable advices throughout the accomplishment of this work.

Finally, I take this opportunity to express my acknowledgment to my parents for their support, and also my patients and everyone who directly or indirectly helped and inspired me.

List of Contents

Title Pag		Page
•	List of Abbreviations	I
•	List of Tables	IV
•	List of Figures	VI
•	Introduction	1
•	Aim of the Work	4
•	Review of Literature	
	 Chapter (1): cerebral hemodynamics and cerebral vasomotor reactivity Chapter (2): Microemboli versus hypovolemia in acute ischemic stroke 	
•	Subjects and Methods	50
•	Results	54
•	Discussion	72
•	Summary and Conclusion	78
•	Recommendations	82
•	Appendix	84
•	References	87
•	Arabic Summary	

List of Abbreviations

133Xe	Xenon 133			
A.C.A	Anterior Cerebral Artery			
ACoA	Anterior Communicating Artery			
ACZ				
AEWSI	Anterior External Watershed Infarcts			
ATP	Adenosine tri phosphate			
BBB	Blood-brain barrier			
ВНІ	Breath-holding Index			
BOLD	Blood Oxygen Level-Dependent			
BZ	Border Zone			
CA	Cerebral Autoregulation			
CBF	Cerebral Blood Flow			
CBV				
CO2	Carbon dioxide			
CPP	Cerebral Perfusion Pressure			
CSO	Centrum semiovale			
CT	Computed tomography			
CVR	Cerebral Vasomotor Reactivity			
CWS	Cortical watershed strokes			
DM	MDiabetes Mellitus			
DWI	WI Diffusion Weighted Image			
EEG	G Electroencephalographic			
EWS	External Water Shed			
EWSI	External Watershed Infarction.			
fMRI	Functional Magnetic Resonance			
	Imaging			

List of Abbreviations (cont.)

.Flow Velocity.
. Hydrogen
. Hemodynamic Impairment
. High Density Lipoprotein
. Hypertension
.Internal Carotid Artery
.Intracranial pressures
.Internal Watershed
.Internal Watershed Infarction.
.low density lipoprotein
. Mean Arterial blood Pressure
. Middle cerebral artery
. Microembolic signals
. Mean flow velocity
. Near-infrared spectroscopy
. Nitric oxide
. Neurovascular unit
Oxygen extraction fraction
.CO2 partial pressure
. Posterior cerebral artery
. Posterior communicating artery
. Positron emission tomography
. Posterior External Watershed Infarcts
. Single Photon Emission Computed
.Transcranial Doppler
.Trans-esophageal echocardiography

List of Abbreviations (cont.)

TIA	Γ ΙΑ Transient Ischemic Attack	
	Tomography	
TTE	Trans Thoracic Echo	
VBH	Velocity Breath Holding	
WHO	World health organization	
WS	Watershed	
WSI	Water Shed Infarction	

List of Tables

Table No.	Title Page		
Table (1):	demographic data including risk		
	factors55		
Table (2):	description of WSI characteristics		
	(site and side) by MRI perfusion and		
	TCD results among cases 57		
Table (3):	description of the results of TTE,		
	TEE and carotid duplex59		
Table (4):	correlation between embolic,		
	hypoperfusion and mixed WSI by		
	(MRI perfusion and TCD) and		
	patients' risk factors62		
Table (5):	correlation between embolic,		
	hypoperfusion and mixed WSI by		
	(MRI perfusion and TCD) and		
	patients' risk factors		
Table (6):	correlation between results of MRI		
	perfusion and patients' risk factors 65		
Table (7):	correlation between results of TCD		
	and patients' risk factors66		
Table (8):	correlation between internal,		
	external and mixed WSI (by MRI		
	brain) as regard embolic and		
	hypoperfusion causes		

List of figures

Table No.	Title Pa	ge
Table (9):	Agreement between MRI brain and	
	MRI perfusion as regard diagnosis of	
	WSI site (internal and mixed)6	9
Table (10):	sensitivity and specificity of MRI perfusion	
	in detecting hypoperfusion signs to detect the	
	etiology and site of WSI6	9
Table (11):	Agreement between MRI brain and TCD	
	as regard diagnosis of WSI site (external	
	and mixed)7	0
Table (12):	sensitivity and specificity of TCD in	
	detecting microembolic signals to detect the	
	etiology and site of WSI	0
Table (13):	Agreement between MRI brain and MRI	
	perfusion as regard diagnosis of WSI site	
	(internal only)7	0
Table (14):	Agreement between MRI brain and TCD	
	as regard diagnosis of WSI site (external	
	only7	1

List of Figures

Figure N	o. Title Page			
Fig. (1):	Intact cerebral autoregulation, where			
	within autoregulatory range (50-150) 8			
Fig. (2):	Impaired cerebral autoregulation, where			
	CBF is entirely dependent on ABP9			
Fig. (3):	Effects of blood gases on CBF 12			
Fig. (4):	a. TCD propeinsonated through trans			
	temporal foramen b. different skull			
	foramina for insonation15			
Fig. (5):	TCD for assessment of VMR19			
Fig. (6):	Types of watershed infarcts30			
Fig. (7):	Neurological symptoms and infarction			
	pattern 47			
Fig. (8):	Axial diffusion weighted images			
	showing (a) bilateral posterior EWS, (b)			
	anterior EWS48			
Fig. (9):	Different patterns of IWS infarcts in			
	axial diffusion weighted images49			
Fig. (10):	Site of WSI among cases 57			
Fig. (11):	Wall contractility by TTE59			

List of figures

Figure No.	Title	Page
Fig. (12): CD pl	laques	63
Fig.(13): DWI a	nd MRI perfusion brain	of 80 years
old ma	ale patient	84
Fig.(14): DWI and MRI perfusion of 40 years old		
male pa	ıtient	85
Fig.(15): DWI ar	nd MRI perfusion of 62 y	rears old
female.		86

Introduction

Stroke is a worldwide health problem. It makes an important contribution to the morbidity, mortality and the disability in the developed as well as the developing countries. A WHO collaborative study, which was done in 12 countries, showed that the incidence rates of stroke were 0.2 - 2.5 per 1000 population per year. It is the leading cause of adult disability and the second most common cause of death worldwide. It accounts for 10 - 12% of the total deaths in the developed countries (*Park et al, 2005*).

Disturbances in the cerebral function in stroke are caused by three morphological abnormalities, which include stenosis, occlusion or rupture of arteries, leading to ischemia, infarction and cerebral hemorrhage respectively (*Bladin et al, 1993*).

Watershed strokes are named because they affect the distal watershed areas of the brain. The original terminology came from the German literature, which used the analogy of an irrigation system. The German scholars compared the blood flow in distal arterial territories of the brain to the last field on a farm, which was the area with the least supply of water and therefore most vulnerable to any reduction in flow. In a medical context, the term "watershed" refers to those areas of the brain that receive dual blood supply from the branching ends of two large arteries (*Bladin et al, 1993*).

These events are localized to two primary regions of the brain:

- 1. Cortical watershed strokes (CWS), or outer brain infarcts, are located between the cortical territories of the anterior cerebral artery (ACA), middle cerebral artery (MCA), and posterior cerebral artery (PCA).
- 2. Internal watershed strokes (IWS), or sub cortical brain infarcts, is located in the white matter along and slightly above the lateral ventricle, between the superficial systems of the MCA and ACA, or between the deep and the superficial arterial systems of the MCA (*Momjian et al*, 2005).

The conventional theory implicates hemodynamic compromise produced by repeated episodes of hypotension in the presence of a severe arterial stenosis or occlusion. The lower perfusion pressure found within the border zone areas in this setting confers an increased susceptibility to ischemia, which can lead to infarction. This causal role of severe arterial hypotension has been well described and confirmed by the results of experimental studies in animals (*Howard et al*, 1966).

The typical clinical manifestations of syncope, hypotension, and episodic fluctuating or progressive weakness of the hands are also supportive of this theory of hemodynamic failure (*Bogousslavsky et al, 1993*).

Radiologic studies also support the hypothesis that border zone infarcts distal to internal carotid artery disease are more likely to occur in the presence of a non-competent circle of Willis (*Masuda et al*, 1994).

In sharp contrast with this widely prevalent interpretation, several pathologic investigations have emphasized an association between border zone infarction and micro emboli, and embolic material has been found within areas of border zone infarction in autopsy series (*Masuda et al*, 1994).

Preferential propagation of emboli in the border zone regions also has been found in experimental studies. Border zone infarction may be better explained by invoking a combination of two often interrelated processes: hypo perfusion and embolization (*Caplan et al*, 1998).

Hypoperfusion, or decreased blood flow, is likely to impede the clearance (washout) of emboli. Because perfusion is most likely to be impaired in border zone regions, clearance of emboli will be most impaired in these regions of least blood flow. Severe occlusive disease of the internal carotid artery causes both embolization and decreased perfusion. Similarly, cardiac disease is often associated with microembolization from the heart and aorta with periods of diminished systemic and brain perfusion. This theory, although it seems reasonable, remains unproved and has been challenged on many accounts (*Caplan et al, 1998*).