The Potential Therapeutic Effects of Insulin Sensitizer in Ovarian Failure Induced by either Chemotherapy or Gamma-Radiation Therapy

Thesis presented by

Ríham Solíman Mabrouk Saíd

M.Sc, Ain Shams University (2013)
Assistant Lecturer at Drug Radiation Research Department,
National Center for Radiation Research and Technology,
Egyptian Atomic Energy Authority.

Submitted for partial fulfillment of PhD degree in Pharmaceutical Sciences to Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University.

Under the supervision of

Dr. Ebtehal El-Demerdash Zakí

Professor of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University.

Dr. Ahmed Shafik Nada

Professor of Physiology, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority.

Dr. Mohamed Mostafa Kamal

Lecturer of Biochemistry, Faculty of Pharmacy, Ain Shams University.

Pharmacology and Toxicology Department Faculty of Pharmacy Ain Shams University (2016)

بسم الله الرحمن الرحيم

"لِلهِ مُلْكُ السّمَاوَاتِ وَالأَرْضِ يَخْلُقُ مَا يَشْنَاءُ يَهَبُ لِمَن يَشْنَاءُ إِنَاتًا وَيَهَبُ لِمَن يَشْنَاءُ الذّكُورَ * أَوْ يُزَوّجُهُمْ ذُكْرَاناً وَإِنَاتاً وَيَجْعَلُ مَن يَشْنَاءُ عَقِيماً إِنّهُ عَلِيمٌ قَدِيرٌ "

صدق الله العظيم سورة الشوري آية {٩٤- ٥٠}

Acknowledgement

At first I thank and praise **ALLAH** in a compromise to complete access to this work and may **ALLAH** accept it and reward us for it in the Hereafter to gain **His** kind mercifulness and forgiveness.

All thanks and appreciation are due to **Dr. Ebtehal El Demerdash**, Professor of Pharmacology and Toxicology, Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, my principal supervisor, for sharing her profound knowledge in the field of reproductive endocrinology and for drilling me in the noble art of autonomy that made this work possible. I very much admire her wide knowledge in science as well as her ability to encourage and inspire a young scientist at times of over-concern. I have had the privilege to benefit from her invaluable advice and support.

I would like to sincerely thank, **Dr. Ahmed Shafik**, Professor of Physiology, National Center for Radiation Research and Technology, for his visionary enthusiasm, guidance, and cooperation in the practical work throughout the study.

I owe my gratitude to **Dr. Mohamed Mostafa**, Lecturer of Biochemistry, Department of Biochemistry, Faculty of Pharmacy, Ain Shams University, for his guidance, kind cooperation, critical review of the manuscript of this thesis and for his valuable comments.

I would like to thank **Dr. Adel Baker**, Professor of Pathology, Faculty of Veterinary Medicine, Cairo University for his kind help in the histopathology part throughout the study.

I wish to sincerely thank, **Dr. Eman Mohamed Mantawy**, **Dr. Amal Kamal**; Lecturers of Pharmacology and Toxicology, **MSc Pharmacists Reem Tarek and Sherif Shoib**; Assistant Lecturers of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, who have participated in the execution of the present study and has listened to my complaint and crow over experimental data.

I feel enormously grateful to all the various staff in Pharmacology and Toxicology Department, Faculty of Pharmacy, Ain Shams University and every person in the Faculty who supported and helped me in my way.

I would like to express my appreciation and thanks to all members in Radiation Research Department, National center for Radiation Research and Technology, Egyptian Atomic Energy Authority who supported me in my way. Special thanks to **Dr. Hala Noor**, Professor of Microbiology and Head of the department, and **Dr. Hala Faraag**, Professor of Microbiology, and Head of Biotechnology Branch for their continuous collaborations and support.

Acknowledgement

No words will ever be able to describe my gratitude towards my family. My parents have provided me with a solid, safe ground to stand on. Thanks for your enthusiasm for what I do, and for your funds and continuous prayers. Their life-long unconditional love and support has been an enormous asset for me. My heartfelt thanks go also to my sister and my brothers whom I know I can always count on.

Riham Soliman Said

LIST OF CONTENTS

Subjects	Page
List of abbreviations	I
	<u> </u>
List of tables	V
List of figures	VI
Publication related to the thesis	
Abstract	1
	<u>-</u>
Introduction	
- Premature ovarian failure	3
- Radiotherapy induced premature ovarian failure	8
- Ionizing Radiation-induced bystander effects	11
- Potential targets in the ovary resulted in premature ovarian failure	24
- Resveratrol	26
- Resveratrol pharmacokinetics	29
- Resveratrol molecular targets	35
Resveratrol motecular targets Resveratrol pharmacodynamics	44
Aim of the work	53
Materials and Methods	
- Design of the work	56
- Materials	61
- Serum Anti-Mullerian Hormone Assessment	67

List of contents

- Histopathological examination	71
- Morphometric analysis of ovarian follicles	72
- Determination of ovarian TNF-a level	73
- Immunohistochemical Staining of NF-κB	81
- Real-Time Polymerase Chain Reaction (RT-PCR)	83
Analysis of IL-6, IL-8 and IL-10 Gene Expressions	
- Immunohistochemical Staining of Proinflammatory	94
Enzymes: iNOS and COX-2	
- Immunohistochemical Staining of PARP-1	95
- Real-Time Polymerase Chain Reaction (RT-PCR)	95
Analysis of Visfatin, SIRT1, and PPAR-γ Gene	
Expressions	
Determination of Ovarian AMPK-a [pT172] level	98
Results	
Folliculogenesis markers	111
Inflammatory markers	127
Resveratrol molecular targets	146
Teeterusies meseemus emgete	
D:	
Discussion	158
Summary and conclusion	168
References	173
Arabic summary	

Αβ	Amyloid beta
AFC	Antral follicle count
АМН	Anti-Müllerian hormone
АМРК	Adenosine monophosphate-activated protein kinase
AP-1	Activator protein-1
ATM	Ataxia telangiectasia mutated
BCA	Bieinchoninic acid
BSA	Bovine serum albumin
СатККВ	Calcium/calmodulin-dependent kinase kinase β
COX	Cyclooxygenase
Ct	Threshold cycle
DMSO	Dimethylsulfoxide
E2	Estradiol
ELISA	Enzyme-linked immunosorbent assay
FOXO	Forkhead box class O

FSH	Follicle stimulating hormone
CARRI	Classical delayers 2 Dissert at a Debardor many
GAPDH	Glyceraldehyde-3-Phosphate Dehydrogenase
HDACs	Histone deacetylases
HRP	Horseradish Peroxidase
H ₂ O ₂	Hydrogen peroxide
IL	Interleukin
iNOS	Inducible nitric oxide synthase
IR	Ionizing radiation
LKB1	Liver Kinase B1
МАРК	Mitogen activated protein kinase
mTOR	Mammalian target of rapamycin
mTORC	Mammalian target of rapamycin complex
NAD	Nicotinamide adenine dinucleotide
NAM	Nicotinamide
NAMPT	Nicotinamide phosphoribosyl transferase
NF-κB	Nuclear factor kappa B

NO	Nitric oxide
Nrf2	Nuclear factor (erythroid-derived 2)-like 2
NTCP	Normal tissue complication probability
02-	Superoxide radical
он.	Hydroxyl radical
PARP-1	Poly (ADP-ribose) polymerase 1
PCOS	Polycystic ovary syndrome
PGC-1α	Peroxisome proliferator-activated receptor - γ coactivator 1α
PI3K/Akt	Phosphoinositide 3-kinase/atypical kinase
POF	Premature ovarian failure
PPAR	Peroxisome proliferator-activated receptor
Raptor	Regulatory-associated protein of mTOR
ROS	Reactive oxygen species
RQ	Relative quantitation
RSV	Resveratrol

qRT-PCR	Real-Time Polymerase Chain Reaction chain reaction
Sir2	Silent information regulator 2
Sirt1	Silent information regulator
SOD	Superoxide dismutases
ТВІ	Total body irradiation
TBS	Tris buffered saline
ТСР	Tumor control probability
TGF-β	Transforming growth factor beta
TNF-α	Tumor necrosis factor alpha
VEGF	Vascular endothelial growth factor

List of tables

List of Tables

Table	Table title	Page
1	Sequences of primers sets used for the analysis of gene expression	66
2	Effect of resveratrol (RSV) on γ -radiation-induced body, ovarian and uterine weight loss	112
3	Effect of resveratrol (RSV) on serum Anti- Müllerian hormone (AMH) level in rats exposed to whole-body irradiation (IR)	116
4	Morphologically follicle count in the different stages of development	123
5	Effect of resveratrol (RSV) on ovarian tumor necrosis factor (TNF)-α level in rats exposed to whole-body irradiation (IR)	128
6	Effect of resveratrol (RSV) on ovarian AMPK-α [pT172] concentration in rats exposed to whole-body irradiation (IR)	156

List of Figures

Figure	Figure title	Page
1	Causes of premature ovarian failure (POF)	5
2	Illustration of a typical tumor control probability (solid blue line) and normal tissue complication probability (red solid line) curve as a function of total dose delivered to the tumor	13
3	A model of radiation induced bystander responses	14
4	Cellular signaling events triggered by clinically relevant doses of radiation	17
5	Radiation-induced inflammatory signaling	19
6	Radiation therapy induces pro-inflammatory responses in the tumor	20
7	Stages of the pathogenesis of radiation induced fibrosis	23
8	Production of anti-müllerian hormone (AMH) by growing follicles and its inhibitory effect on initial follicular recruitment	24
9	Chemical structures of resveratrol isomers	28
10	Metabolism of resveratrol in liver by sulfotransferases (SULT) enzymes	31
11	Metabolic pathway of RSV in intestine by uridine 5'-diphospho-glucoronosyl transferases (UGT) enzymes	32

List of figures

Figure	Figure title	Page
12	In vivo fate of resveratrol following oral administration.	34
13	A schematic diagram for the role of SIRT1 in cell functions	36
14	The SIRT1-catalyzed protein deacetylation reaction	37
15	Interplay between SIRT1 and PARP1 under oxidative stress	38
16	AMP-activated protein kinase (AMPK) complex activation	39
17	Resveratrol and the complex relationship between AMPK and SIRT1	41
18	Proposed model of AMP-activated kinase (AMPK) dependence and silent information regulator 1 (Sirt1) independence of the antidiabetic effects of resveratrol.	49
19	Flowchart of the experimental design	58
20	Flowchart of the assessed parameters	60
21	Flowchart illustrating the principle of AMH assay	67
22	Standard calibration curve of AMH	70
23	Flowchart illustrating the principle of TNF-α assay	73
24	Standard calibration curve of TNF-α	78
25	Melting curve of IL-6, IL-8, IL-10, and GAPDH	91

List of figures

Figure	Figure title	Page
26	Amplification plots of IL-6, IL-8, IL-10, and GAPDH	92
27	Melting curve of visfatin, SIRT1, PPAR-γ and GAPDH	96
28	Amplification plots of visfatin, SIRT1, PPAR-γ, and GAPDH	97
29	Flowchart illustrating the principle of AMPK-α [pT172] assay	99
30	Standard calibration curve of AMPKα [pT172]	105
31	Standard calibration curve of protein	109
32	Body weight of rats supplemented with resveratrol (RSV) and/or exposed to whole-body irradiation (IR)	113
33	Effect of resveratrol (RSV) on ovarian and uterine weight of rats exposed to whole-body irradiation (IR), expressed as a percentage of control group	114
34	Effect of resveratrol (RSV) on serum level of Anti-Müllerian hormone (AMH) in rats exposed to whole-body irradiation (IR), expressed as a percentage of control	117
35	Representative photomicrographs of hematoxylin and eosin-stained ovarian tissue sections	120
36	Total ovarian follicle count per cross section of rats supplemented with resveratrol (RSV) and/or exposed to whole-body irradiation (IR)	124
37	Percentage proportion of ovarian healthy and atretic follicles of rats supplemented with resveratrol (RSV) and/or exposed to whole-body irradiation (IR)	125