

Role of MSCT in pre and post Transcatheter aortic valve replacement (TAVR) imaging

Essay

Submitted for the partial fulfillment of the Master Degree in Radiodiagnosis

By: Sara Wahid Hussein Aly Tantawy

M.B.B.C.H.

Supervised By:

Prof. Dr. Eman Soliman Metwally

Professor of Radiodiagnosis, Faculty of Medicine Ain Shams University

Dr. Emad Hamid Abdel-dayem

Lecturer of Radiodiagnosis, Faculty of Medicine Ain Shams University

> Faculty of medicine Ain Shams university 2016

Acknowledgments

First and foremost, I feel always indebted to **Allah**, the Most Beneficent and Merciful.

I wish to express my deepest gratitude and thanks to **Prof. Dr. Eman Soliman Metwally,** Professor of Radiodiagnosis, Faculty of Medicine, Ain Shams University for her constructive criticism and support and for giving me the privilege to work under her supervision.

My most sincere gratitude is also extended to **Dr. Emad Hamed Abdel-Dayem**, lecturer of Radiodiagnosis, Faculty of Medicine, Ain Shams University, for his tremendous effort, continuous guidance and support throughout this work.

I would also like to thank **Prof. Dr. Ahmed Samir,** professor of Radiodiagnosis, faculty of medicine, Ain Shams University, **Prof. Dr. Ahmed Khasaba,** Professor of Cardiology, Faculty of Medicine, Ain Shams University, and **Dr. Ahmed El Sayed**, lecturer of Cardiology, Faculty of Medicine, Ain Shams University, for their generous assistance and collaboration.

Last but not least, words cannot express my gratitude to all members of my Family, especially my **Parents** and my Husband for pushing me forward in every step in the journey of my life.

Candidate

Sara W. Tantawy

Table of Contents

Introduction and Aim of the Work	1
Anatomy of the aortic root and valve	6
Aortic valve stenosis and indications of valve	
replacement	26
Technique of TAVR (transcatheter aortic valve	
replacement)	39
Role of MSCT in pre-procedural planning	62
Role of MSCT in post-procedural assessment	93
Illustrative cases	.115
Summary and conclusion	129
References	.131
Arabic summary	—

List of Abbreviations

AAA : Abdominal Aortic Aneurysm

AMVL : Anterior Mitral Valve Leaflet

CHF : Congestive Heart Failure

ECM : Extracellular Matrix

ESC : European Society of Cardiology

 $\mathbf{F/Fr}$: French (3 Fr = 1 mm)

LVOT : Left Ventricular Outflow Tract

PAR : Paraaortic regurgitation

PARTNER: Placement of Aortic Transcatheter Valves

PCI : Percutaneous Coronary Intervention

PHV : Prosthetic Heart Valve

PTFE : Polytetrafluoroethylene

PVR : Paravalvular regurgitation

SAVR : Surgical Aortic Valve Replacement

STJ : Sino-Tubular Junction

TAVI : Trans-catheter Aortic Valve Implantation

TAVR : Trans-catheter Aortic Valve Replacement

TEE : Transoesophageal Echocardiography

THV : Transcatheter Heart Valve

TTE : Transthoracic Echocardiography

List of Figures

Figure No.	Title	Page No.
Fig. 1.1:	Proposed nomenclature for the aortic root components	6
Fig. 1.2:	Position of the cardiac valves	8
Fig. 1.3:	The base of the ventricles after removal of the atria.	9
Fig. 1.4:	The bases of all three aortic cusps	9
Fig. 1.5:	Principal elements of the fibrous skeleton of the heart. Postero-superior aspect view.	10
Fig. 1.6:	Aortic root cut open showing insertion of the semilunar cusps.	11
Fig. 1.7:	Cloverleaf shape at midportion of aortic root	12
Fig. 1.8:	Double-oblique contrast-enhanced CT image of the aortic root at the level of the sinuses of Valsalva	13
Fig. 1.9:	Crownlike suspension of the aortic valve leaflets within the aortic root	15
Fig. 1.10:	Coronal contrast enhanced CT image shows the aortic root and its borders	15
Fig. 1.11:	(A) The 3 rings of the aoric root.(B) The relationship of the cusp insertions and the V-A junction.	17
Fig. 1.12:	The aortic orifice opened from the front to show the cusps of the aortic valves, their nodules, lunules, commisures and the triple-scalloped line of anular attachment.	18
Fig. 1.13:	Nodules and lunules	20
Fig. 1.14:	Aortic annulus	22
Fig. 1.15:	The aortic valve leaflets are just barely visible at the level of the ventriculoarterial junction	23

Eig. 1.16.	A artia reat rings	22
Fig. 1.16:	Aortic root rings	23
Fig. 1.17:	Interleaflet fibrous triangles	24
Fig. 2.1:	(Left) Different types of bicuspid aortic	28
	valve. (right) Short axis SSFP cardiac MRI of	
	a patient with type I BAV	
Fig. 2.2:	(Left) Short axis cardiac CTA during diastole	29
	of a type I BAV without raphe. (Right)	
	Ascending aortic dilatation and preservation	
	of STJ (type A morphology)	
Fig. 2.3:	(Left) Normal and abnormal appearances of	31
	the aortic valve. (Right) Lateral CXR	
	showing calcification in the anatomic location	
	of the aortic valve.	
Fig. 2.4:	(Left) Extensive aortic valve calcifications.	31
	(Right) Hypertensive systolic jet consistent	
	with aortic stenosis.	
Fig. 2.5:	Calcific vavular degeneration. A, calcific	33
C	aortic stenosis of a previously normal valve.	
	B, calcific aortic stenosis occurring on a	
	congenitally bicuspid valve.	
Fig. 2.6:	Survival curve for patients with severe	37
\mathcal{E}	symptomatic aortic stenosis who had valve	
	replacement and similar patients who	
	declined surgery.	
Fig. 2.7:	Management of severe aortic stenosis	38
Fig. 3.1:	PARTNER trial I design.	41
Fig. 3.1:	(A) Two-year with 1-year landmark analysis	42
1 1g. 3.2.	of all-cause mortality Kaplan–Meier curve in	42
	PARTNER trial cohort 1B. (B) Two-year all	
	cause-mortality Kaplan–Meier curve in	
	PARTNER trial cohort 1A.(C) Two-year	
	stroke Kaplan–Meier curve in PARTNER	
	trial cohort 1A.	
Fig. 2.2:		50
Fig. 3.3:	(A) Edwards SAPIEN Transcatheter Heart	52
	Valve (Edwards Lifesciences). (B) Edwards-	

	SAPIEN XT Transcatheter Heart Valve	
	(Edwards Lifesciences). (C) Medtronic	
	CoreValve TM (Medtronic).	
Fig. 3.4:	Implantation of TAVI devices.	54
Fig. 4.1:	Contrast enhanced- retrospectively gated	65
1 ig. 4.1.	ECG-gated data set. A, midsystolic and B,	
	early-diastolic double oblique transverse	
	views transecting through annulus plane.	
Fig. 4.2:	Pseudothrombus during pre-TAVR	68
1 lg. 4.2.	evaluation.	08
Fig. 4.3:	Images of the infrarenal abdominal aorta and	73
1 15. 4.3.	iliac arteries shows dense calcification of the	75
	iliac arteries with luminal diameter > 8 mm.	
Fig. 4.4:	Inadequate access route patency.	74
Fig. 4.5:	Contrast-enhanced coronal MIP CT	75
1 ig. 4.5.	angiography of the iliofemoral access route	75
	and sections perpendular to the vessels in 2	
	different patients.	
Fig. 4.6:	(a) Volume rendered CT images showing	77
\mathcal{E}	entry site for TAVR (T) at the level of second	
	intercostal space. (b) for Coreavalve devices	
Fig. 4.7:	(a) the diameter of the aortic annulus On an	78
	echocardiographic image (b) corresponding	
	measurement of aortic annulus on double	
	oblique reformatted image.	
Fig. 4.8:	Double oblique reformatted CT images show	79
	the basal insertion sites of the right corornary	
	cusp, non coronary cusp and left coronary	
	cusp.	
Fig. 4.9:	Determination of the Aortic Annulus Plane in	81,82
	CT Imaging— A Step-by-Step Approach.	
Fig. 4.10:	Possible measurements of the aortic annulus.	85
Fig. 4.11:	Available transcatheter valve sizes from	86
	Edwards Lifesciences (a) and Medtronic (b)	
	with their corresponding ranges of aortic	

	annular diameters.	
Fig. 4.12:	Non contrast CT acquisition.	88
Fig. 4.13:	Measurements of the distance between the	89
	annulus and ostia of the left main (LM) and	
	right coronary artery (RCA).	
Fig. 4.14:	Angiographic angle determination.	91
Fig. 5.1:	(a) Double-oblique Ct image obtained in	94
	diastole shows a Sapien valve. (b) Oblique	
	coronal CT image showing a Corevalve	
	device.	
Fig. 5.2:	Effect of heart variability on image quality of	95
	a Corevalve device.	
Fig. 5.3:	Morphological features of Corevalve and	101
	Sapien THVs after deployment.	
Fig. 5.4:	Displaced calcifications after TAVI.	103
Fig. 5.5:	CT features of PTFE felt pledgets after	104
	transapical placement of a Sapien prosthesis.	
Fig. 5.6:	PTFE pledgets and indentation of the	105
	ventricular wall after transapical insertion of	
	a Sapien prosthesis.	
Fig. 5.7:	Subcutaneous air after transapical	106
	implantation of a Sapien valve.	
Fig. 5.8:	Valve-in-valve procedure with deployment of	108
	a CoreValve device in a degenerated stented	
	bioprosthetic valve (Edwards Lifesciences).	
Fig. 5.9:	CoreValve device asymmetry caused by	110
	extensive calcifications	
Fig. 5.10:	Pseudoaneurysm and arteriovenous fistula	113
	formation after CoreValve device	
	implantation with transarterial femoral	
D' 5 1 1	access.	111
Fig. 5.11:	Hematomas.	114
Fig.6.1:	Double-oblique axial CT showing	115
	calcifications of all three aortic valve cusps.	
Fig. 6.2:	Double oblique axial CT at the level of aortic	115

	annulus showing its diameters	
E: 62	annulus showing its diameters.	116
Fig. 6.3:	Aortic annular perimeter	116
Fig. 6.4:	Aortic annulus area	116
Fig. 6.5:	Oblique curved image of the LVOT showing	116
	STJ diameter measurement	
Fig. 6.6:	Double oblique view of the LVOT showing	117
	distance between the left coronary valve cusp	
	and left coronary ostium.	
Fig. 6.7:	Double oblique view of the LVOT showing	117
	distance between the right coronary valve	
	cusp and right coronary ostium.	
Fig. 6.8	Axial diameters of the descending abdominal	118
	aorta showing calcifications.	
Fig. 6.9:	Axial peripheral vessels diameters.	119
Fig. 6.10:	Coronal CT angiography images of both	120
	CIAs, EIAs, CFAs and SFAs, showing	
	calcifications and tortuosity.	
Fig. 6.11:	Double oblique CT axials showing aortic	121
	valve cusps calcifications and aortic annulus	
	measurements.	
Fig. 6.12:	Double oblique images showing distances	122
	between valves and coronary ostia.	
Fig. 6.13:	Descending abdominal aortic calcifications.	123
Fig. 6.14:	Axial peripheral vessels diameters.	124
Fig. 6.15:	Aortic root analysis using synapse 3D	125
6. 5. 2. 2.	software.	
Fig.6.16:	(left) calcified aortic valve cusps. (right) STJ.	126
Fig. 6.17:	Intersinus diameters	126
Fig. 6.18:	Ascending aorta diameters	126
Fig. 6.19:	Aortic root analysis using synapse 3D	127
6. 3.27	software.	
Fig.6.20:	(left) calcified aortic valve cusps. (right) STJ.	128
Fig. 6.21:	Ascending aorta diameter = 26.2 mm	128
6. 5.==9	Descending aortic diameter = $16.3 \times 16 \text{ mm}$	
	100 11 10 11	

List of Tables

Table	Title	Page No.
Table 3.1:	TAVI - current guidelines.	43
Table 3.2:	TAVI - current relative and absolute	45
	contraindications.	
Table 3.3:	Pre-TAVI investigations.	46
Table 3.4:	TAVI devices.	53
Table 4.1:	recommended minimum vessel diameter based on the delivery device	71
Table 4.2:	Required information from preprocedural CT examinations.	71
Table 5.1:	Proposed CT acquisition parameters for postprocedural THV evaluation.	96
Table 5.2:	Checklist for Post-TAVR CT examination.	99

Introduction

Aortic valve stenosis is a progressive disease that evolves from a non-symptomatic valve with thickened and calcified leaflets but without hemodynamic repercussions into an increasingly degenerative valve with extensive calcified and immobile leaflets. As the valve stenosis worsens, symptoms progress from mild to severe, with increasing fatigue and shortness of breath being common complaints and with the condition invariably leading to heart failure. (*Nkomo et al.*, 2006).

Its overall prevalence is estimated to be 5%, mostly affecting the elderly population, with 2%-3% of individuals over 75 years of age having severe aortic valve stenosis. (*Rosamond et al.*, 2008).

The final symptomatic stage is short and rapidly progressive and is associated with a 2-year survival rate of 50% or less. (*Iung et al.*, 2003).

Traditionally, elective surgical aortic valve replacement has been considered the most effective treatment for advanced disease, significantly improving patient symptoms and survival compared with patients who are unwilling or unable to undergo surgery. Unfortunately, not all patients are eligible for surgery, as many as 30% of patients with aortic stenosis are not considered surgical candidates because of comorbidities and estimated extreme surgical mortality risk. (*Iung et al.*, 2005).

In recent years, alternative therapeutic options for patients deemed inoperable have emerged with the development of transcatheter-based therapies and specific aortic valve prostheses that can be transported to the aortic root using a nonsurgical endovascular, transaortic, or transapical approach. Once in place, these bioprosthetic valves functionally replace the native valve by displacing it to the aortic root wall during deployment. Given its less invasive nature, this procedure is less strenuous for patients and can therefore be applied in selected patients in a nonsurgical subgroup. The procedure is known as transcatheter aortic valve replacement (TAVR), also referred to as transcatheter aortic valve implantation (TAVI) or percutaneous aortic valve replacement. (Salgado et al., 2015).

Recently published data from individual centers, large prospective studies, observational registries, and multicenter randomized controlled trials have validated the efficacy of TAVR compared with the standard of care in patients with severe aortic valve stenosis. These results, together with promising short- and medium-term outcomes, have led to the success and increasingly widespread clinical implementation of this intervention, with over 50,000 procedures now being performed worldwide each year. (*Salgado et al.*, 2015 and *Kodali et al.*, 2012).

Nevertheless, not every patient who is refused or is at high risk for surgery is a good candidate for TAVR. A thorough clinical evaluation remains an important part of the global procedural assessment, since the overall condition of some patients may be so severely compromised by frailty, known and/or masked comorbidities, or a deteriorated mental state that even a successful TAVR procedure will have little chance of improving the patient's quality of life. (Salgado et al., 2015).

Therefore prior to TAVR, patients undergo an extensive work-up as certain technical and anatomic criteria must be met, and it is in this respect that noninvasive imaging techniques play a crucial role to determine patient eligibility and to ultimately guide procedure planning. (*Vahanian et al.*, 2008).

Computed tomographic (CT) angiography has evolved into an integral part of the preoperative workup for TAVR, primarily in terms of morphologic evaluation of the aortic root and annulus, evaluation of different potential access routes, the development of CT-supported sizing algorithms for improving patient outcomes and assessment of extra-cardiac condition, with ever-growing evidence that integration of CT into TAVR planning actually reduces procedural complications, such as paravalvular regurgitation. (*Binder et al.*, 2013).

Until recently, echocardiography has been adequate for the of prosthetic heart valve (PHV) assessment function. Echocardiography offers many advantages in this setting, including noninvasiveness, low cost, bedside availability, and rapid execution. Its greatest strength lies in its ability to provide both anatomic Doppler imaging-based functional and information, such as measurement of pressure gradients over the valve and the valve orifice area. However, the PHV components

also generate artifacts at echocardiography, which can hamper assessment. Furthermore, echocardiography is known to be operator dependent. (*Zoghbi et al.*, 2009).

Over the past 5 years, CT has been shown to provide information on PHV functioning that is complementary to that obtained with echocardiography. CT is especially helpful in providing details on valve position and geometry, and modes of valve dysfunction or obstruction by helping to identify thrombus, pannus tissue, and abnormal PHV angulation, diagnose PHV endocarditis and determine the presence and extent of mycotic aneurysms. (*Habets et al.*, 2011).

Furthermore, CT has the intrinsic advantage of depicting not only the valve itself but also the surrounding cardiac and thoracic anatomy. In addition, CT is frequently used to evaluate complications along the different access routes. (*De Heer et al.*, 2013).

Aim of Work

To emphasize on the role of MSCT as a crucial and integral step in pre-procedural patient selection, anatomical assessment and valve sizing prior to TAVR, and to discuss various types of valve dysfunction and potential procedural complications, along with their CT appearances.