

STUDY OF VITAMIN D DEFICIENCY IN INPATIENTS ADMITTED WITH CHRONIC DISEASES AT AIN SHAMS UNIVERSITY HOSPITAL

Thesis

Submitted for Partial Fulfillment of Master Degree

In Internal Medicine

Sherihan Abo El Yazed M. El Shabokshy (M.B;B.Ch.)

Supervised by

Prof. Raef Malak Botros

Professor of Internal Medicine & Endocrinology Faculty of Medicine - Ain Shams University

Assistant Prof. Mona Mohamed AbdelSalam

Assistant Professor of Internal Medicine & Endocrinology Faculty of Medicine - Ain shams University

Dr. Ahmed Mohamed Bahaa El Din

Lecturer of Internal Medicine & Endocrinology Faculty of Medicine - Ain shams University

Faculty of Medicine
Ain Shams University
2017

List of Contents

Ti	Title Page		
•	List of Abbreviations		
•	List of Tables	V	
•	List of Figures	VIII	
•	Introduction	1	
•	Aim of the Work	1	
•	Review of Literature		
	- Chapter 1: Vitamin D	5	
	- Chapter 2: Vitamin d status and chronic		
	illnesses5	50	
	I. Vitamin D deficiency and chronic liver diseases	51	
	II. Vitamin D and Chronic Obstructive Pulmonary Disease	50	
	III. Vitamin D deficiency and cerebrovascular strokes6	59	
	IV. Vitamin D deficiency and congestive heart failure	77	
	- Chapter 3: Undiagnosed Vitamin D		
	Deficiency in the hospitalized Patients	35	
•	Subjects and Methods	93	
•	Results	103	
•	Discussion	131	
•	Summary	138	
•	Recommendations	141	
•	References	142	
•	Master Sheet	188	
•	Arabic Summary		

List of Abbreviations

1,25(OH)2D	1, 25-dihydroxyvitamin D
ALB	Albumin
ALK.P	Alkaline phosphatase
ALT	Alanine aminotransferase
AST	Aspartate aminotransferase
BUN	Blood urea nitrogen
Ca	Calcium
CCA	Cholangiocarcinoma
CHF	Congestive heart failure
CLD	Chronic liver disease
COPD	Chronic obstructive pulmonary disease
Cr	Creatinine
CVD	Cardio vascular disease
cvs	Cerebrovascular stroke
CYP	Cytochrome P
CYP24A1	Cytochrome P450, family 24, subfamily A, polypeptide1
CYP27B1	Cytochrome P450, family 27, subfamily B, polypeptide1
CYP2R1	Cytochrome P450, family 2, subfamily R, polypeptide1
DBP	Vitamin D binding protein
DHCR7	7-dehydrocholesterol reductase
DM	Diabetes Mellitus
DNA	Deoxyribonucleic acid
FEV	Forced expiratory volume
FGF23	Fibroblast growth factor 23

List of Abbreviations (Cont.)

FVCForced vital capacity

Gc-globulin......Group-specific component

GWASGenome-wide association study

HCC Hepatocellular carcinoma

HFHeart failure

HGB.....Hemoglobin

HSHighly significant

IBDInflammatory bowel disease

IL.....Interlukin

IU.....International unit

KDakilodalton

MgMagnesium

MMPMatrix metalloproteinase

MSMultiple sclerosis

NAFLDNon-alcoholic fatty liver disease

NASH.....Non-alcoholic steato-hepatitis

NT-proANPN-terminal pro-ANP

NF- κB.....Nuclear factor kappa B

OPGOsteoprotegerin

PBCPrimary biliary cirrhosis

PO4Serum Phosphorous

PTHParathyroid hormone

r.....Pearson correlation coefficient

RANKL.....Receptor activator of nuclear factor kappa-B ligand

List of Abbreviations (Cont.)

RASRenin-Angiotensin system

RCTRandomized controlled trial

RXR.....Retinoic acid X receptor

SAPS.....Simplified Acute Physiologic Scores

SD.....Standard deviation

T.BilTotal bilirubin

TLRToll-like receptor

T.protTotal proteins

T1DMType 1 diabetes mellitus

TNFTumour necrosis factor

VDIVitamin D intoxication

VDR......Vitamin D receptor

VDRE......Vitamin D response element

List of Tables

Table No.	Title Page		
Review of Literature			
Table (1):	Forms of vitamin D6		
Table (2):	Laboratory and radiographic findings that suggest possible vitamin D deficiency		
Table (3):	Reference levels of serum 25(OH)D 44		
Table (4):	Recommended Dietary Intakes of Vitamin D for Patients at Risk for Vitamin D Deficiency45		
Table (5):	Potential manifestation amongst critically ill patients of known association of vitamin D deficiency seen in the general population		
Table (6):	Causes and Management of Vitamin D Deficiency		
Table (7):	Reference values of vitamin D levels 97		
Results			
Table (8):	Demographic statistics of the studied patients (n=80)		
Table (9):	Vitamin D status among the studied patients according to Hollis reference levels		
Table (10):	Comparison between studied vitamin D status groups as regard age using ANOVA		

List of Tables (Cont.)

Table No.	Title Page
Table (11):	Comparison between vitamin D status groups as regard gender distribution using Chi-Square
Table (12):	Comparison between males and females as regard vitamin D level in the different groups using T-Test 114
Table (13):	Comparison between vitamin D status groups as regard length of hospital stay using ANOVA
Table (14):	Comparison between vitamin D status groups as regard outcome of hospital admission using Chi-Square
Table (15):	Causes of death in non-survived studied patients with different disease etiologies
Table (16):	Comparison of vitamin D level between survivors and non-survivors in the vitamin D status groups using T-Test
Table (17):	Comparison between vitamin D status groups as regard level of alkaline phosphatase using ANOVA 119
Table (18):	Comparison between vitamin D status groups as regard level of corrected serum calcium using ANOVA

List of Tables (Cont.)

Table No.	Title Page
Table (19):	Comparison between vitamin D status subgroups as regard laboratory data using ANOVA
Table (20):	Correlation of vitamin D level and different parameters in all studied patient
Table (21):	Comparison between vitamin D status groups as regard percent of diabetes mellitus using Chi-Square 123
Table (22):	Comparison of vitamin D level between diabetics and non-diabetics in different vitamin D status groups using T-Test
Table (23):	Comparison between vitamin D status groups as regard percent of hypertension using Chi-Square
Table (24):	Comparison of vitamin D level among hypertensives and non-hypertensives in different vitamin D status groups using T-Test
Table (25):	Comparison between the different participant groups as regard vitamin D status using Chi-Square
Table (26):	Comparison of vitamin D level in four different groups using ANOVA 128

List of Tables (Cont.)

Table No.	Title Page
Table (27):	Comparison between different disease etiology groups as regard length of hospital stay within deficient group using ANOVA
Table (28):	Comparison between different disease etiology groups as regard outcome of hospital admission within deficient group using Chi-Square

List of Figures

Title

Figure No.

Page

Review of Literature			
Fig. (1):	The two major forms of vitamin D 6		
Fig. (2):	Metabolism of vitamin D8		
Fig. (3):	Actions of vitamin D22		
Fig. (4):	Possible effects of vitamin D deficiency		
Fig. (5):	Potential antihypertensive effects of vitamin D		
Fig. (6):	Proposed vitamin D effects on heart and blood vessels		
Fig. (7):	Proposed mechanisms of the role vitamin D in intensive care patients 88		
Results			
Fig. (8):	Vitamin D status among the studied patients according to Hollis reference levels		
Fig. (9):	Comparison between studied vitamin D status groups as regard age 112		
Fig. (10):	Comparison between vitamin D status groups as regard gender distribution		
Fig. (11):	Comparison between vitamin D status groups as regard length of hospital stay		

List of Figures (Cont.)

Figure No.	Title	Page
Fig. (12):	Comparison between vitamin I status groups as regard outcome of hospital admission	
Fig. (13):	Comparison between vitamin I status subgroups as regard level of alkaline phosphatase	of
Fig. (14):	Comparison between vitamin I status groups as regard level of corrected serum calcium	\mathbf{f}
Fig. (15):	Comparison between vitamin I status groups as regard percentag of diabetes mellitus	e
Fig. (16):	Comparison between vitamin I status groups as regard percent of hypertension	
Fig. (17):	Comparing vitamin D level in th four studied groups	

Abstract

Introduction: Vitamin D deficiency among hospitalized patients may widespread than realized. Vague musculoskeletal complaints in these chronically ill patients may be attributed to multiple underlying disease processes rather than a deficiency in vitamin D. However, the failure to diagnose an underlying deficiency places the patient at risk for continued pain, weakness, secondary hyperparathyroidism, osteomalacia, and fractures. Aim of the Work: Investigate the prevalence of vitamin D deficiency in hospitalized patients and its impact on the length of stay and outcome of hospitalization. Subjects and Methods: Eighty patients admitted to our department of medicine at Ain Shams University hospital, were sampled for their vitamin D level on admission. Sampling was part of the routine hospital workup. Results: Our results revealed that 37 patients (46%) were vitamin D insufficient, 32 patients (40%) were deficient and only 11 patients (14%) were sufficient. Vitamin D level had a highly significant inverse correlation with length of hospital stay (r= -0.648) (p= <0.001). In vitamin D deficient and insufficient groups there was a highly significant inverse correlation with outcome of hospital admission (r=-4.952) (p= <0.001), (t=-4.314) (p=<0.001) respectively. **Conclusion:** In conclusion we found that, vitamin D deficiency and insufficiency are significantly associated with a longer hospital stay and a poor outcome of hospital admission. vitamin D sufficiency may be a significant confounder in patients admitted to hospital with acute deterioration of their chronic illnesses. Significantly better outcome regarding morbidity and mortality in vitamin D sufficient patients urges the medical staff to pay attention to that poorly recognized albeit important problem.

Keywords: Vitamin D, Chronic Diseases, mortality, morbidity.

INTRODUCTION

Vitamin D is a fat-soluble vitamin that is naturally present in very few food variants, and available as a dietary supplement. It is mainly produced endogenously when ultraviolet rays from sunlight strike the skin and trigger vitamin D synthesis; vitamin D obtained from sun exposure, food, and supplements is biologically inert and must undergo two hydroxylations in the body for activation. The first occurs in the liver and converts vitamin D to 25-hydroxyvitamin D (25(OH)D), also known as calcidiol, the second occurs primarily in the kidney and forms the physiologically active 1,25-dihydroxyvitamin D [1,25(OH)₂D], also known as calcitriol (*Food and Nutrition Board*, 2010).

Vitamin D promotes calcium absorption in the gut and maintains adequate serum calcium and phosphate concentrations to enable normal mineralization of bone and to prevent hypocalcemic tetany, it is also needed for bone growth and bone remodeling by osteoblasts and osteoclasts (*Holick et al.*, 2007).

Vitamin D deficiency is a common problem among Egyptian females across all age groups, for whom contributing factors include inadequate sun exposure possibly related to cultural/social factors, and insufficient dietary calcium, wearing a sunscreen with a sun protection factor of 30 reduces vitamin D synthesis in the skin by more than 95% (*Botros et al.*, 2015).

Vitamin D has other roles in the body, including modulation of cell growth, neuromuscular function and reduction of inflammation. Also benefits on cardiovascular health, metabolism and prevention of cancer and autoimmune diseases have been described (*Cranney et al.*, 2007).

Many genes encoding proteins that regulate cell proliferation, differentiation, and apoptosis are modulated in part by vitamin D. Many cells have vitamin D receptors, and some convert 25(OH) D to 1, 25(OH)₂D (*Jones et al.*, 2008).

Vitamin D receptors are found in nearly all types of immune cells. Its action on innate immunity is stimulatory, while its action on adaptive immunity is mainly considered to be modulatory (*Kempker et al.*, 2012).

Muscle weakness due to vitamin D deficiency is predominantly of the proximal muscle groups and is manifested by a feeling of heaviness in the legs, tiring easily, and difficulty in mounting stairs and rising from a chair; the deficiency is reversible with supplementation. Muscle atrophy-particularly of type II fibers-has been described histopathologically (*Bischoff-Ferrari et al.*, 2006).

Vitamin D deficiency is rarely considered or treated in critically ill patients, however, recently reported three cases of life-threatening hypocalcemia secondary to vitamin D deficiency, highlighting potential acute complications (*Holick et al.*, 2009).

Deficiency of 25(OH)D prior to hospital admission is a significant predictor of short and long term all cause patient mortality and blood culture positivity in a critically ill patient population (*Braun et al.*, 2011).

Patients with 25 (OH) D deficiencies in medical intensive care unit have increased hospital mortality, longer mechanical ventilation, and longer MICU stay (*Padhi et al.*, 2014).

Vitamin D deficiency is defined as a 25(OH)D below 20 ng/ml, while Vitamin D insufficiency has been defined as a 25(OH)D of 21–29 ng/ml (*Holick et al.*, 2007).

Serum concentration of 25(OH) D is the best indicator of vitamin D status. It reflects vitamin D produced cutaneously and that obtained from food and supplements and has a fairly long circulating half-life of 15 days (*Jones et al.*, 2008).