Serum Vascular Endothelial Growth Factor in Ovarian Cancer

Thesis

Submitted for partial fulfillment of M.D Degree in Obstetrics and Gynecology

By

Ghada Yehia Ahmed Kassim

M.B., B.Ch., M.Sc. Obstetrics and Gynecology Ain Shams University

Supervised By

Prof. Mohamed Abd El-Hamid Yehia

Professor of Obstetrics and Gynecology Faculty of Medicine – Ain Shams University

Prof. Maged Ramadan Abu-Seeda

Professor of Obstetrics and Gynecology Faculty of Medicine – Ain Shams University

Prof. Khaled Kamal Ali

Professor of Obstetrics and Gynecology Faculty of Medicine – Ain Shams University

Prof. Ismail Khalil El-Lamie

Professor of Obstetrics and Gynecology Faculty of Medicine - Ain Shams University

Prof. Mahmoud Ismail Hassan

Professor of Biochemistry & Molecular Biology Faculty of Medicine – Ain Shams University

> Faculty of Medicine Ain Shams University 2012

أهمية قياس مستوى عامل نمو بطانة الأوعية الدموية في مصل الدم في حالات أورام المبيض الخبيثة

رساله

توطئه للحصول على درجة الدكتوراه في أمراض النساء والتوليد

مقدمه من

الطالبة/ غادة يحيى أحمد قاسم ماجستير أمراض النساء والتوليد جامعة عين شمس

تحت اشراف

الاستاذ الدكتور/ محمد عبد الحميد يحيى أستاذ أمراض النساء والتوليد كلية الطب – جامعة عين شمس

الأستاذ الدكتور/ ماجد رمضان أبو سعده الستاذ أمراض النساء والتوليد كلية الطب جامعة عين شمس

الأستاذ الدكتور/ خالد كمال على الأستاذ أمراض النساء والتوليد كلية الطب جامعة عين شمس

الأستاذ الدكتور/ إسماعيل خليل اللمعي أستاذ أمراض النساء والتوليد كلية الطب جامعة عين شمس

الاستاذ الدكتور/ محمود إسماعيل حسن أستاذ الكيمياء الحيوية والبيولوجيا الجزئية كلية الطب جامعة عين شمس كلية الطب عين شمس جامعة عين شمس ٢٠١٢

Acknowledgement

I would like to express my sincere tanks and iam greatly honored for Prof. Mohamed Abd El-Hamid Yehia, Professor of Obstetrics and Gynecology, Faculty of Medicine – Ain Shams University for supervising this work.

I would like also to extend my sincere appreciation and iam extremely grateful to Prof. Maged Ramadan Abu-Seeda, Professor of Obstetrics and Gynecology, Faculty of Medicine — Ain Shams University for supervising this work.

I would like also to express my deepest gratitude to Prof. Khaled Kamal Ali, Professor of Obstetrics and Gynecology, Faculty of Medicine — Ain Shams University, for his continuous encouragement and guidance to accomplish this work.

I gratefully acknowledge the support and assistance of Prof. Ismail Khalil El-Lamie, Professor of Obstetrics and Gynecology, Faculty of Medicine – Ain Shams University to finish this work.

I would like to express my thanks and appreciation to the soul of Prof. Mahmoud Ismail Hassan, The Head of Oncology Diagnostic Unit & Professor of Biochemistry & Molecular Biology, Faculty of Medicine – Ain Shams University .

I would like also to acknowledge the valuable help, effort and meticulous revision of this work by Dr. Adel Shafik Salah El-Din, Lecturer in Obstetrics and Gynecology, Faculty of Medicine – Ain Shams University.

List of Contents

		Title	Page No.		
Int	rod	uction	1		
Air	n o	f the work	2		
Re	viev	<u>v of Literature</u>			
•	Cł	napter (1) Biology of VEGF	3		
	0	Structure of VEGF	3		
	0	VEGF receptors	7		
	0	Biological actions of VEGF	13		
	0	Regulation of VEGF	23		
•	Cł	napter (2) Physiological roles of VEGF	31		
	0	Role of VEGF in adult female	31		
	0	Role of VEGF in ovarian physiology	32		
•	Cł	napter (3) Role VEGF in pathogenesis of ovarian carcinoma	a38		
	0	VEGF expression in ovarian carcinoma	38		
	0	Role of VEGF in tumor growth	39		
	0	Role of VEGF in ovarian cancer angiogenesis	44		
	0	Regulation of VEGF in tumor cells	47		
	0	Role of VEGF in the pathogenesis of ascites	48		
	0	Role of VEGF in impaired host anti-tumor immune response	51		
	0	Role of VEGF in tumor metastasis	53		
	0	Prognostic implications of VEGF in ovarian cancer	57		
•	Cł	napter (4) Anti-VEGF therapy in ovarian carcinoma	63		
	0	Rational for angiogenesis targeted therapy	63		
	0	Combination of anti-angiogenic therapy with chemotherapy	65		
	0	Therapeutic strategies for inhibiting VEGF	66		
	0	Toxicity with VEGF inhibitors	75		
	0	Metronomic chemotherapy and VEGF inhibitors	78		
Pat	tien	ts and Methods	80		
Res	sult	s	95		
Dis	cus	sion	127		
Sui	mm	ary	146		
Co	nclı	usions	149		
Re	Recommendations				
References					
Ar	abio	Summary			

List of Tables

Table No.	Title	Page No.
Table (1):	Hormones and their effect on angi	
Table (2):	Ongoing trials with multitargeted ty inhibitors in ovarian cancer	
Table (3):	Descriptive statistics – numerical d	ata97
Table (4):	$Descriptive \ statistics-categorical \ c$	lata98
Table (5):	Preoperative serum VEGF level accategory.	
Table (6):	Preoperative serum VEGF level histopathologic type	_
Table (7):	Preoperative serum VEGF level according stage	_
Table (8):	Preoperative serum VEGF level according grade.	_
Table (9):	Preoperative serum VEGF level presence of ascites	_
Table (10):	Preoperative SVEGF level according omental or lymph node metast laterality, state of cytoreduction, and at one-year.	asis, disease disease state
Table (11):	Serum VEGF levels at various follo	w-up times115
Table (12):	Comparison of serum VEGF level follow-up times in patients with disease.	th recurrent
Table (13):	Comparison of SVEGF levels at value times in patients with no recurred	
Table (14):	Serum VEGF levels at various fol in patients with recurrence versus recurrence	those without
Table (15):	Correlation between serum VEGI CA125 levels at various follow-up ti	

List of Figures

Figure No.	Title Page No.
Figure (1):	Structural motifs of VEGF exonic regions in the cDNA that encodes VEGF/ VPF products
Figure (2):	Signal transduction and biological processes mediated by VEGFRs and various therapeutic strategies to inhibit VEGF signaling
Figure (3):	The VEGF receptor family
Figure (4):	Multiple functions of VEGF
Figure (5):	Angiogenesis in cancer development, growth, and metastasis
Figure (6):	Icon-6
Figure (7):	Test Principle
Figure (8):	Reconstitution and Dilution of test standard
Figure (9):	Standard curve
Figure (10):	Test Procedure summary91
Figure (11):	Age distribution
Figure (12):	Histopathologic type
Figure (13):	FIGO class
Figure (14):	Tumor grade
Figure (15):	Presence of ascites
Figure (16):	Presence of omental metastasis
Figure (17):	Presence of lymph node metastasis 103
Figure (18):	Disease laterality
Figure (19):	State of cytoreduction
Figure (20):	State of the patient 3 months
Figure (21):	Disease state at 12 months
Figure (22):	Preoperative SVEGF level according to age category 106
Figure (23):	Preoperative SVEGF level according to histopathologic type
Figure (24):	Preoperative SVEGF level according to FIGO stage 108
Figure (25):	Preoperative SVEGF level according to tumor grade 109
Figure (26):	Preoperative SVEGF level according to presence of ascites 110
Figure (27):	Preoperative SVEGF level according to presence of omental metastasis
Figure (28):	Preoperative SVEGF level according to presence of lymph node metastasis

Figure (29):	Preoperative SVEGF level according to bilaterality of disease
Figure (30):	Preoperative SVEGF level according to state of cytoreduction
Figure (31):	Preoperative SVEGF level according to disease state at one year
Figure (32):	SVEGF level at various follow-up times
Figure (33):	SVEGF levels at various follow-up times in patients with recurrence and those without recurrence at 1 year
Figure (34):	Scatter plot for preoperative SVEGF and CA125 levels 122
Figure (35):	Scatter plot for serum VEGF and CA125 levels at 3 months after operation
Figure (36):	Scatter plot for SVEGF and CA125 levels at 6 months after operation
Figure (37):	Scatter plot for SVEGF and CA125 levels at 12 months after operation
Figure (38):	Receiver-operating characteristic curve (ROC) curve for prediction of state of cytoreduction using preoperative serum VEGF level
Figure (39):	Receiver-operating characteristic curve (ROC) curve for prediction of one-year recurrence using preoperative serum VEGF level

List of Abbreviations

AP-1 Activator protein-1 (a transcription factor that regulates gene

expression in response to cytokines and growth factors)

APC antigen presenting cells

BcL B-cell lymphoma/ leukemia

bFGF..... Basic fibroblast growth factor

COX Cyclooxygenase

DC Dendritic cells

EGF Epidermal growth factor

EOC..... Epithelial ovarian Cancer

ER..... Estrogen receptor

Ets..... E-twenty six transcription factors.

Flt-1 Fms-like tyrosin kinase.

HER-2..... Human epidermal growth factor receptor-2

HIF Hypoxia inducible factor

HRE..... Hyoxia response element

HRP..... Horseradish peroxidase.

IGF Insulin like growth factor

IL Interleukin

KDR/FLK...... Kinase insert domain receptor / fetal liver kinase.

KGF..... Keratinocyte growth factor

Mabs..... Monoclonal antibodies

MMP...... Matrix metallo-proteinase

MVD..... Mean vascular density

NO Nitric oxide

NSAID...... Nonsteroidal anti-inflammatory drugs

OHSS..... Ovarian hyperstimulaiton syndrome

PA..... Plasminogen activators

PAI Plasminogen activator inhibitor

PDGF..... Platelet derived growth factor

List of Abbreviations (Cont...)

PDGFR Platelet derived growth factor receptor

PFS Progression – free survival

PG..... Prostaglandin

PLGF Placental growth factor

RECIST Response Evaluation Criteria in Solid Tumors

RTKIs Receptor tyrosin kinase inhibitors

sVEGFR Soluble vascular endothelial growth factor receptor

TGF Transforming growth factor

TMB Tetramethyl-benzidine substrate

TNF Tumor necrosis factor

VEGF Vascular endothelial growth factor

VEGFR...... Vascular endothelial growth factor receptor

VHL..... Von Hipple-Lindau

VPF..... Vascular permeability factor

VVO vesiculo-vacular organelle

Introduction

Ovarian cancer is the leading cause of mortality in gynecologic malignancies and the fifth most common cause of death among all malignancies in women. The patient's best chance for prolonged survival is provided through complete resection of all macroscopic disease. The prognosis is worse if the patients have 2cm or larger residual tumor after primary cytoreductive surgery. For this reason, the prediction of optimal resectability is important (Saygili et al., 2002).

Angiogenesis is an essential requirement for tumor growth and metastasis. Without angiogenesis, tumors grow as in situ and will not expand beyond 2-3mm in diameter. VEGF is the most important angiogenic factor (Shen et al., 2000).

VEGF is crucially involved in various steps of ovarian carcinogenesis. VEGF expression as well as serum levels were shown to be associated with dismal prognosis of ovarian cancer (Shortened disease – free and overall survival) (Hefler et al., 2006).

Currently, angiogenesis appears to be the most promising therapeutic target for ovarian cancer and large phase III trials with anti angiogenic therapeutics are conducted world wide (Mahner et al., 2010).

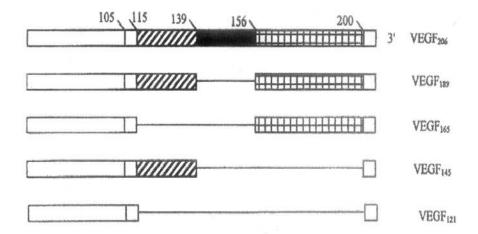
Aim of the Work

- Evaluation of preoperative serum VEGF levels in ovarian carcinoma in relation to various clinical, surgical and pathological variables (age, histopathological type, stage, grade, omental and L.N metastasis, presence of ascites, level of cytoreduction and recurrence).
- Follow up of cases of ovarian cancer with serial evaluations of serum VEGF, 3,6 and 12 months postoperatively.
- Correlation between serum VEGF and CA125 levels.

Chapter (1)

Biology of Vascular Endothelial Growth Factor

Structure of VEGF:


Vascular endothelial growth factor (VEGF) is a disulfide-linked, 34-45 KD homodimeric glycoprotein expressed by a wide variety of normal and transformed cells. Alternatively known as vascular permeability factor (VPF), VEGF was originally noted for the ability to increase microvascular permeability, and subsequently for the capacity to act as a selective endothelial mitogen (Nowak et al., 2008).

VEGF/VPF is a basic, heparin binding, glycoprotein, which binds specifically to receptors on endothelial cells. It has specific mitogenic activity on endothelial cells, and it is apparently devoid of mitogenic activity for other cell types (Woolard et al., 2009).

Members of the VEGF family include VEGF-A (hereafter VEGF), VEGF-B, VEGF-C, VEGF-D and VEGF-E (a virally encoded protein) and placental growth factor (PlGF), all showing various degrees of homology with VEGF (*Girling and Rogers, 2009*).

The most significant of the VEGF family is VEGF-A that is produced in five isoformes, generated by alternative splicing of the VEGF-A gene *(Fraser, 2006)*.

The isoformes are composed of 206-, 189-, 165-, 145-, and 121-amino acid residues (fig. 1). The shorter isofmres, VEGF 145 and VEGF 121, are acidic, do not bind heparin, and are secreted peptides that may act as diffusible agents. The longer isoformes, VEGF-189 and VEGF-206 are basic, with a high affinity for heparin, and remain sequestered in the extra cellular matrix, presumably bound to heparan sulfate proteoglycans. VFGF-165 which is the predominant molecular species is in part secreted and in part matrix bound (*Ferrara, 2004*).

Fig. (1): Structural motifs of VEGF exonic regions in the cDNA that encodes VEGF/ VPF products, full-length form VEGF206, and alternatively spliced transcripts encoding 121-, 145-, 165, and 189-aa VEGF isoformes (*Geva and Jaffe, 2000*).

The various isoforms not only differ in efficiency of secretion and affinity for heparin, but also in the relative potency of vascular permeabilizing and mitogenic activities (*Bastide et al., 2008*).

The human VEGF-A gene has been localized to chromosome 6p21.3, composed of eight exons, separated by seven introns (*Geva et al., 2000*).

The primary VEGF-A transcript derives from a single VEGF-A gene, coding for eight exons. The amino acids encoded by exons 1 to 5 and 8 are conserved in all isoformes, whereas variable alternative splicing occurs in exons 6 and 7, which encode two distinct heparin-binding domains. The presence or absence of these domains influences solubility and receptor binding. The heparinbinding domain encoded by exon-6 determines binding to extra-cellular matrix, and therefore containing this domain (VEGF-A 189 and VEGF-A 206) are bound tightly to cell surface heparin-containing proteoglycans in the extra-cellular matrix, whereas those lacking the domain are diffusible. VEGF-A 165, which contains only one heparin-binding region encoded by exon7, is moderately diffusible, and VEGF-A 121, which lacks the domains encoded by both exons 6 and 7 is highly diffusible (Hoeben et al., 2004).

Plasmin liberates the heparin binding forms of VEGF that can bind to cell-surface and extracellular