

A Study on the antioxidative properties of *Ginkgo biloba* leaf extract in albino rats exposed to gamma radiation or monosodium glutamate.

Thesis
Submitted for partial fulfillment of
Master Degree in Biochemistry

Noura Mahmoud Marrouf Arafa B.Sc.of Biochemistry Under Supervision of

Prof. Dr/ Nadia M. Abdallah Prof.Dr/Nour EL-Din Amien

Professor of Biochemistry Faculty of Science Ain Shams University Prof. of Biological Chemistry
National Center for Radiation
Research and Technology
Atomic Energy Authority

Prof .Dr/Fatma F. Abdel Hamid

Professor of Biochemistry Faculty of Science Ain Shams University

Biochemistry Department Faculty of Science Ain Shams University 2014

يسم الله الرحين الرحيم التالي المالي المالي

عدق الله العظها

آية (32) سورة البخرة

This work is dedicated to my father's spirit, my mother, my husband, my lovely daughter Yara, and my brothers and sisters.

I declare that this thesis has been composed by myself and that the work of which is a record has been done by myself. It has not been submitted for a degree at this or any other university.

Noura Mahmoud Marrouf Arafa.

Contents	Page
Acknowledgement	i
Abstract	iii
List of abbreviations	iv
List of tables	vi
List of figures	ix
Introduction	xii
Aim of the work	xvii
CHAPTER I REVIEW OF LITERATURE	1
1.1. Ionizing radiation	1
1.1.1. Types of reactive oxygen species	3
1.1.2. Effect of radiation on liver enzymes	6
1.1.3. Effect of radiation on urea level and creatinine	9
1.1.4. Effect of radiation on blood glucose level	10
1.1.5. Effect of radiation on glucose-6-phosphate	
dehydrogenase	12
1.1.6. Effect of radiation exposure on induction of lipid	
Peroxidation	13
1.1.7. Effect of radiation on metallothionein	16
1.1.8. Effect of radiation on glutathione content	17
1.1.9. Effect of radiation on superoxide dismutase	21
1.2. Effect of radiation on trace elements	23
1.2.1. Iron	24
1.2.2. Zinc	25
1.2.3. Copper	28
1.2.4. Manganese	30
1.2.5. Selenium	32
1.3. Monosodium glutamate	34
1.4. Radioprotective agents	41
1.5. Natural antioxidants	41

1 (C: 1 121 1 6 ((CDE))	10
1.6. – Ginkgo biloba leaf extract (GBE)	42
1.6.1 Applications or uses of Ginkgo biloba extract in	
herbal therapy	44
1.6.2. Physiological action of <i>Gingko biloba</i>	45
1.6.3. Antioxidant properties of flavonoids	46
1.6.4. Antioxidant properties of Gingko biloba	48
CHAPTER II	
MATERIALS & METHODS	53
4. 34. 4. 4. 1.	
1- Materials	53
1.1. Experimental Animals	53
1.2. Radiation Processing	53
1.3. Monosodium glutamate	53
1.4. Ginkgo biloba extract	54
1.5. Experimental design	54
1.6.Studied organs	55
1.7.Biochemical parameters	55
1.8.Sampling	55
2- Methods	56
2.1. Blood Serum.	30
-Determination of Aspartate transaminase (AST and	56
Alanine transaminase (ALT) activities	59
-Determination of γ-Glutamyl transaminase activity -Determination of urea concentration	60
-Determination of the concentration	62
	63
-Determination of blood glucose level	65
-Determination of glucose-6-phosphate dehydrogenase	03
2.2. Tissue Homogenate.	66
-Estimation of superoxide dismutase activity	66 68
-Determination of reduced glutathione content	08
-Determination of lipid peroxidation level by MDA	70
estimation	70
-Determination of metallothionein level by Ag-saturation	70
hemolysate method	72 75
2.3. In acid digests of some organs.	75

2.3.1Determination of trace element concentrations by	
Atomic Absorption Spectrophotometry	75
2.3.2. Microwave digestor technology	76
2.3.3. Instrumentation	77
3- Statistical Analysis of Data	79
Chapter III	
Results	81
Chapter IV	
Discussion	133
<u>= ===================================</u>	
Smmary and Conclusion	163
•	
References	166
Arabic summary	
Arabic abstract	

Before all, I would like to give all ample commendation and thankfulness to **ALLAH** who illuminates my way and gives me all beautiful things in my life.

I would like to express my sincere appreciation and gratitude to **Prof. Or. Nadia M. Abdallah**, Professor of Biochemistry, Faculty of Science, Ain Shams University, for keen supervision, encouragement, guidance, patience, honesty, and the valuable time she spread for me to revise and accomplish this thesis. I only ask my God to reward her continuous donation to all students she met

_

My deepest appreciation is to **Prof. Dr. Nour EL-Din Amien**, professor of Biological chemistry, National Centre for Radiation Research and Technology (NCRRT), who started with me from beginning, gives me experience, and teaches me practical techniques. Great thanks for him suggesting of the research point, supporting during practical experiments, facilitating all necessities required for beginning and finishing this thesis including chemicals, equipment and other necessities required for performance of this work.

It is pleasure to acknowledge with sincere thanks and appreciation, the kind help afforded by **Prof. Dr. Fatma. F Abdel Hamid**, Professor of Biochemistry, Faculty of Science, Ain Shams University, for her supporting, guidance and keen supervision during writing this work.

I would like also; to express my deep thanks to **Dr/ Asrar.M Howass**, lecturer in Department of Drug Radiation Research, NCRRT, for the subjective criticism and the continuous helpful efforts that were kindly and generously offered by her; throughout

each stage in the practical work of this study and teaching me the model and the handling of the work.

My thanks are extended to all members working in **The Central lab**, Department of Drug Radiation Research, NCRRT, for their co-operation during carrying out tests needed for this study.

Grateful acknowledge is expressed to all my professors and colleagues in Department of Drug Radiation Research, NCRRT, for their kind support.

I would like to give my appreciation to the head and all my colleagues at various scientific and technical divisions of NCRRT with special reference to the staff member of gamma irradiation unit for their unforgettable cooperation in carrying out experimental irradiation.

My thanks are expressed to the members of Biochemistry Department, Faculty of Science, Ain Shams University.

Finally, no sufficient words I could say to **my families** for their understanding, patience, wisdom advices and great support during performance of this thesis and their encouragement which enabled this work to be completed, my God reward them all.

Noura Mahmoud Marrouf.

The present study was designed to evaluate the effect of Ginkgo biloba leaf extract to improve the hepatic and renal damage induced by γ - radiation or monosodium glutamate (MSG) on certain biological functions in albino rats. The study includes serum transaminases (ALT & AST), y-glutamyl transferase (GGT), urea, creatinine, glucose-6-phosphate dehydrogenase (G-Metallothionein 6-PD) and glucose in serum. (MT), malondialdehyde (MDA), glutathione content (GSH) superoxide dismutase (SOD) activity were determined in liver and kidney homogenate. The trace elements: iron, zinc, copper, manganese and selenium in liver, kidney, spleen and blood.

The results revealed that γ - radiation or monosodium glutamate caused a significant increase in serum activities of liver enzymes, kidney function, and the glucose level, a decrease in G-6-PD, GSH content, SOD activity while there was an increase in MDA, MT accompanied by changes in trace element concentrations.

Administration of *Ginkgo biloba* extract ameliorated the harmful effects induced by gamma-radiation or monosodium glutamate; taking in consideration the effect of *Ginkgo biloba* extract as a potent natural antioxidant and scavenger for free radicals.

	A 44 - 4' D - C' - '4 II A - 4' - '4 - 1' 1
ADHA	Attention Deficit-HyperActivity disorder.
AIDS	Acquired Immune deficiency syndrome.
ALT	Alanine transaminase.
ALP	Alkaline phosphatase.
ARC	Hypothalamus Arcuate nucleus.
AST	Aspartate transaminase.
ATP	Adinosine triphosphate.
CAT	Catalase.
CNS	Central nervous system.
CP	Ceruloplasmin.
CRS	Chinese Resturant Syndrome disease.
Cu-Zn-SOD	Copper Zinc superoxide dismutase.
DTPA	Diethylenetriamine pentaacetic acid.
DNA	Deoxyribonucleic acid.
Ec-SOD	Extracellular superoxide dismutase.
EDTA	Ethylenediamine tetraacetic acid.
FAO	Food and Agriculture Organization.
GBE	Ginkgo biloba leaf extract.
GBSP	Novel antioxidant protein purified from Ginkgo
	biloba seeds
GGT	Gamma glutamyl transferase.
G-6-PD	Glucose-6-phosphate dehydrogenase.
GSSR	Oxidized Glutathione
GSH	Glutathione reduced enzyme.
GSH-R	Glutathione reductase enzyme.
GSHPX	Glutathione peroxidase enzyme.
H_2O_2	Hydrogen peroxide.
IR group	Irradiated group.
JECFA	Joint Expert Committee on Food Additives.
LOOH	Lipid hydroperoxide.

Mn-SOD	Manganese superoxide dismutase
MDA	Malondialdehyde.
MDA	·
MSG	Monosodium glutamate.
MT	Metallothionein.
NADPH	Nicotinamide adenine dinucleotide phosphate.
NCRRT	The National Center for Radiation Research and
NCRKI	Technology.
NO	Nitric oxide
NOS	Nitric oxide synthase.
NPSH	Non-protein sulfhydryl compound.
PAF	Platelet Activating Factor.
RBCs	Red blood corpuscles.
ROS	Reactive oxygen species.
RNA	Ribonucleic acid.
SAT	Serum pyruvate transferase.
SOD	Superoxide dismutase.
SOT	Serum oxalate transferase.
T3	3,5,3'- Triiodothyronine.
T4	L-3,5,3',5' Tetraiodothyronine (Thyroxine).
TBA	Thiobarbituric acid.
TBRAS	Thiobarbituric acid reactive substances.
TCA	Tricholoro aceticacid.
TDO	Antibodies related to thyroid hormones
TPO	deficiency.
Tris-HCL	Tris-Hydrochloric acid.
UV	Ultraviolet.
XOR	Xanthine oxidoreductase system.
WHO	World Health Orgaization.

Table		Page
1	Effect of <i>Ginkgo biloba</i> extract on serum ALT, AST and GGT activities in rats received gamma radiation or monosodium glutamate.	82
2	Effect of <i>Ginkgo biloba</i> extract on serum urea and creatinine concentrations in rats received gamma radiation or monosodium glutamate.	86
3	Effect of <i>Ginkgo bilo</i> ba extract on serum glucose and G-6-PD activities in rats received gamma radiation or monosodium glutamate.	89
4	Effect of <i>Ginkgo biloba</i> extract on MDA and MT concentrations in liver homogenate in rats received gamma radiation or monosodium glutamate.	92
5	Effect of <i>Ginkgo biloba</i> extract on MDA and MT concentrations in kidney homogenate in rats received gamma radiation or monosodium glutamate.	95
6	Effect of <i>Ginkgo biloba</i> extract on SOD and GSH activities in liver homogenate in rats received gamma radiation or monosodium glutamate.	98
7	Effect of <i>Ginkgo biloba</i> extract on SOD and GSH activities in kidney homogenate in rats received gamma radiation or monosodium glutamate.	101
8	Effect of <i>Ginkgo biloba</i> extract on iron concentration in liver and kidney in rats received gamma radiation or monosodium glutamate.	104

Table		Page
9	Effect of <i>Ginkgo biloba</i> a extract on iron concentration in spleen and blood in rats received gamma radiation or monosodium glutamate.	107
10	Effect of <i>Ginkgo biloba</i> extract on zinc concentration in liver and kidney in rats received gamma radiation or monosodium glutamate.	110
11	Effect of <i>Ginkgo biloba</i> extract on zinc concentration in spleen and blood in rats received gamma radiation or monosodium glutamate.	113
12	Effect of <i>Ginkgo biloba</i> extract on copper concentration in liver and kidney in rats received gamma radiation or monosodium glutamate.	116
13	Effect of <i>Ginkgo biloba</i> ba extract on copper concentration in spleen and blood in rats received gamma radiation or monosodium glutamate.	119
14	Effect of <i>Ginkgo biloba</i> extract on manganese concentration in liver and kidney in rats received gamma radiation or monosodium glutamate.	122
15	Effect of <i>Ginkgo biloba</i> extract on manganese concentration in spleen and blood in rats received gamma radiation or monosodium glutamate.	125
16	Effect of <i>Ginkgo biloba</i> extract on selenium concentration in liver and kidney in rats received gamma radiation or monosodium glutamate.	128

Table		Page
17	Effect of <i>Ginkgo biloba</i> extract on selenium concentration in spleen and blood in rats received gamma radiation or monosodium glutamate.	131