Ain Shams Univeristy Faculty of Science Chemistry Department

Physico-chemical Study of Some Prepared Dyed Films and Possible Application as Radiation Dosimetry Monitors

A Thesis Submitted By

Asmaa sobhy Abd El-Hamid Salem

M.Sc., (Chemistry), (2003)

For The Fulfillment of The Degree of Ph.D.in Chemistry

Supervised By

Prof. Dr. Abdel Gawad Mohamed Rabie

Professor of Organic Chemistr, Faculty of Science, Ain Shams University

Prof. Dr. Seif El-Din Ebraheem

Professor of Radiation Chemistry, Chairman of National Center for Radiation Research and Technology

Dr. Sayeda Elewa Eid

Associated Professor of Radiation Chemistry, National Center for Radiation Research and Technology Ain Shams Univeristy Faculty of Science Chemistry Department

Physico-chemical Study of Some Prepared Dyed Films and Possible Application As Radiation Dosimetry Monitors

A Thesis Submitted By

Asmaa Sobhy Abd El-Hamid Salem M.Sc., (Chemistry), (2003)

For The Fulfillment of The Degree of Ph.D.in Chemistry

Chemistry Department Faculty of Science Ain Shams University

Cairo, Egypt 2015

ACKNOWLEDGENIENT

First and foremost, I would like to thank **Allah** for giving me the opportunity and the strength to accomplish this work.

I would like to express my deep gratitude to **Prof. Dr. Abdel Gawad Mohamed Rabie** prof. of Organic Chemistry,

Faculty of Science, Ain Shams University. He was always kind enough to suggest the topics of research and to follow up the progress of the work with keen interest; guidance, moral support, valuable criticism and whose efforts made this humble work a success.

I am deeply indebted to **Prof. Dr. Seif El-Din Ebraheem**Professor of Radiation Chemistry, National Center for Radiation
Research and Technology, Atomic Energy Authority, AEA, for his
profound interest, valuable advice, continuous encouragement
and constructive criticism throughout the thesis.

I am deeply indebted to **Dr. Sayeda Elawa Eid,** Associated Professor of Radiation Chemistry, National Center for Radiation Research and Technology, Atomic Energy Authority, for her

valuable assistance, diligent guidance, keen interest, fruitful discussions and continuous help during the progress of the work.

I wish to express my thanks to **Prof. Dr. Wafaa Badr El- Dein** for her assistance and support.

Thanks also to my husband and my friendly colleagues of Radiation protection and Dosimetry Department National Center for Radiation Research and Technology (NCRRT) for their kindness and unfailing help.

Dedication

To soul of my father and sister

To my mother

To my dear husband

To my lovely son and daughter

Aim of the work

The aim of the present thesis is the investigation of different dosimetry systems with objective of studying the possibility of their use as gamma dosimeters.

Moreover, it is aimed at finding suitable practical labeling film, rods dosimeter for high dose dosimetry. The study includes the evaluation of the dosimeter response using different techniques. Also, the study is extended to investigate in detail the variation of response of these films under the effect of different environmental conditions (e.g. light, dark, relative humidity etc) both during irradiation and storage time. These all film dosimeters prepared in the thesis can be applied in medical, pharmaceutical sterilization processing and water treatment etc.

Contents

Subject	Page
Abbreviations	I
List of tables	II
List of figures	III
Aim of the work	VIII
I. Introduction	1
I.1 Industrial application of radiation technology	1
I.2 Industrial irradiators for radiation processing "gamma of	&
electron beam radiation processing"	6
I.2.1 Gamma Irradiator	6
1.2.2 Electron beam irradiator	7
I.3 Radiation Dosimetry	8
1.3.1 Absorbed dose	9
I.3.2 Role of dosimetry in quality control	12
I.3.3 Characterization of dosimetry systems	13
I.3.3.1 Lot homogeneity	14
I.3.3.2 Influence quantities	14
I.3.3.3 Calibration.	14
I.3.3.4 Traceability	15
I.3.3.5 Uncertainty in dose measurement	15
I.3.4 Principles of EPR or ESR Spectroscopy	16

I.3.4.1 ESR Phenomenon.	17
I.3.4.2 Theory & Working of ESR.	19
I.3.4.3 Relaxation and Saturation	21
I.3.4.4 Spin Spin Splitting (Hyperfine Splitting)	22
I.3.4.5 Applications	22
I.4 Literature Review	23
I.4.1 EPR Dosimetry	23
I.4.2 Thin Film Dosimeters and Label Dosimetry System	for
Gamma Radiation and Electron Beam	30
I.4.2.1 Undyed Plastics	. 31
I.4.2.2 Dyed plastics	35
I.4.3 Azo dye Dosimeter	49
II. Experimental	51
II.1 Reagents	51
II. 2 Apparatus	56
II2.1 Irradiation sources (Gamma Irradiation)	56
II. 2.2 UV/VIS spectrophotometer	57
II.2.3 EPR Spectrometer	57
II. 2.4 Thickness gauge	58
II.3 Preparation of Film Dosimeter	58
II.3.1 Casting of the films	58
II.4. Preparation of (MSG) rods	59
II.5 Preparation of dyes stock solution	60

II.5.1 preparation of stock solution of QR dye	60
II.5.2Preparation of stock solution of CPR	60
II.5.3 Preparation of stock solution of (TBPE) dye	50
II.5.4 Preparation of stock solution of (MTB)	60
II.5.5 Preparation of stock solution of BG	60
II.5.6 Preparation of stock solution of (4NPAN)	60
II.6 Preparation of film dosimeter	.61
II.6.1 Preparation of CPR/QR /PVA mixed dye film	
dosimeter	61
II.6.2 Preparation of TBPPE-Ksalt/MTB/ PVA mixed dye	•
Films	62
II.6.3 Preparation of BG/PVA films	63
II.6.4 Preparation of BG/PVB films	63
II.6.5 Preparation of 4PNPAN /PVB dye films	.64
II.7 Irradiation procedure (Gamma irradiation)	64
II.8 Absorption spectra measurements	65
II.9 EPR measurements	66
II.10 Relative humidity during irradiation procedure	.67
III. Result and Discussion	96
III. 1. 1 st Unit A New EPR Dosimetry System for	
Sterilization at High Dose Radiation Processing	.71
III.1. ESR Dosimetric Properties of Sodium Glutamate	72
III.1.1. Spectral features	72

III.1.2.Power dependence	73
III.1.3.Effect of gamma radiation on sod. glutamate powder.	. 74
III.1.4.Short term decay of sod.glutamate powder	. 76
III.1.5.Post irradiation stability of sod.glutamate powder	77
III.1.6.Radiation sensitivity	. 78
III.1.7.Effect of gamma radiation on Monosodium glutamat	e
rods	79
III.1.8.Dose response of mono sodium glutamate rods	80
III.1.9.Post-irradiation stability at different storage condition	ns.81
III.1.10.Humidity during irradiation	. 82
III.1.11.Conclusion.	83
2 nd unit:A new mixed dyes poly(vinyl alcohol) film used as a	l
dosimeter	85
III.2. A Thin film radiation monitor for high dose application	ns 87
III.2.1 Absorption spectra	87
III.2.2 Response Curve	89
III.2.3 Humidity during irradiation	91
III.2.4 Pre- irradiation stability	93
III.2.5 Post irradiation stability	94
III.2.6 Conclusion.	95
III.3. Possible using of Tetrabromophenolphathalin ethyl est	er
potassium salt (TBPPEE-Ksalt) and Methyl `thymol blue	
(MTB) mixture in dying PVas radiation dosimetry monitor.	. 96

III.3.1 Absorption Spectra.	96
III.3.2 Response Curve	97
III.3.3 Humidity during irradiation.	100
III.3.4 Pre- irradiation stability	.101
III.3.5 Post irradiation stability	.102
III.3.6 Conclusion.	.103
3 rd unit. Dosimetry system based on Brilliant green dyed pol	ly
(vinyl alcohol) or poly (vinyl butyral) for High Do	se
Radiation Processing.	. 105
III.4. Investigation of Polymeric Films Based on Brilliant G	reen
Dyed Poly(Vinyl Alcohol) and Poly (Vinyl Butyral) for	or Use
in High Dose Processing Dosimetry	106
III.4.1 Polymeric film based on Brilliant green dyed poly (vi	inyl
Butyral) for high dose application	106
III.4.1.1 Absorption spectra.	106
III.4.1.2 Response curves.	107
III.4.1.3 Effect of chloral hydrate	108
III.4.2 Polymeric film based on Brilliant green dyed poly(vir	nyl
alcohol) for high dose application	109
III.4.2.1 Absorption spectra.	109
III.4.2.2 Response curves.	110
III.4.2.3 Effect of chloral hydrate	111
III.4.3 Radiation chemical yield.	112

III.4.4 Effect of humidity during irradiation	114
III.4.5 Pre- irradiation stability	115
III.4.6 Post irradiation stability	117
III.4.7 Conclusion.	. 118
4 th unit: Radiation induced degradation of an azo dye for	
radiation dosimerty, optical energy gap determination	120
III.5. Radiation induced degradation of 4-p-nitophenyl-azo)-1
naphathol dye films for radiation dosimetry and option	cal
energy gap determination	. 122
III.5.1Absorption spectra	122
III.5.2.Response Curve.	123
III.5.3Effect of MgCl ₂	124
III.5.3.1 Absorption spectra	124
III.5.3.2. Response Curve	125
III.5.4 Radiation chemical yield	127
III.5.5 Effect of humidity during irradiation	129
III.5.6 Optical Energy gap	130
III.5.7 Pre- irradiation stability	133
III.5.8 Post irradiation stability	134
III.5.9 Conclusion	136
Summary	137
References	141
الملخص العربي	

Abbreviations

Symbol	Name		
PVB	Poly (vinyl Butyral)		
PVA	Poly (vinyl alcohol)		
MSG	Mono Sodium Glutamate .6H ₂ o		
CPR	Chlorophenol Red		
QR	Quinaldine red		
MTB	Methy thymol Blue		
TBPPEE-Ksalt	Tetrabromophenolphathalien ethyl ester potassium salt		
BG	Brilliant Green		
4PNPAN	4-p-nitophenyl-azo1-naphathol		
ISO	International Organization for Standarization		
ASTM	American Stander of Testing and Materials		