Nitric Oxide Donors for Pre-induction Cervical Ripening

A Thesis

Submitted for Partial Fulfillment of Master Degree in Obstetrics and Gynecology

Presented by

Ahmed Samir Eid Mohamed

M.B.B.Ch, AinShamsUniversity, 2008 Resident of Ob. & Gyn. Helwan General hospital

Under Supervision of

Prof. Abdel Megeed Ismail Abdel Megeed

Professor of Obstetrics & Gynecology Faculty of Medicine, AinShamsUniversity

Dr. HayamFathy Mohammed

Lecturer of Obstetrics & Gynecology Faculty of Medicine, AinShamsUniversity

Faculty of Medicine AinShamsUniversity 2013

Acknowledgment

My deepest gratitude and thanks to **ALLAH** the most Merciful for guiding me through and giving me the strength to complete this work the way it is.

I wish to express my deepest thanks and gratitude to **Prof. Dr. Abdel**Megeed Ismail Abdel Megeed, Professor of Obstetrics & Gynecology,

Faculty of Medicine, Ain Shams University, who gave me the honor of
working under his supervision, continuous guidance and valuable advice
throughout the work. He offered me his support and patience, enriching me
with his vast experience and continuous advices which helped me to overcome
any difficulty.

I would like to express my deepest gratitude and special thanks to **Dr. HayamFathy Mohammed**, Lecturer of Obstetrics & Gynecology, Faculty of Medicine, Ain Shams University, for her close observation, generous guidance, effective help, and valuable supervision.

Finally, it is a great honor to me to express my deepest gratitude, extreme thankfulness and deep appreciation to my Family who helped me a lot to complete this work.

Ahmed Samir Eid Mohamed

LIST OF CONTENTS

iii
<i>v</i>
1
3
4
14
32
51
103
111
127
134
135
138
139

List of Abbreviations

CS: Cesarean section

cGMP: Cyclic guanosine monophosphate

FAP: Fetal arterial perfusion pressure

FHR: Fetal heart rate

GTN: Glyceryltrinitrate

GAGs: Glycosaminoglycans

HA: Hyaluronan

HAase:Hyaluronidase

HPV: Hypoxic pulmonary vasoconstriction

IVF: In vitro fertilization

IOL: Induction of labor

IL: Interleukin

ISDN: Isosorbiddinitrate

ISMO: Isosorbidemononitrate

IMN: Isosorbidemononitrate

ISMN: Iso-sorbidemononitrate

ISTN: Iso-sorbidetrinitrate

IUD: Intrauterine device

LPS: Lipopolysaccharide

mU:Milliunit

ml: Milliliter

TNF- α : Necrosis factor-alpha

Neu: neutrophils

NO: Nitric oxide

NOS: Nitric oxide synthase

NTG: Nitroglycerine

NMDA: N-methyl-D-aspartate

OT: Peptide Oxytocin

PG: Prostaglandins

PGE2: Prostaglandins E2

PI:Pulsatility index

PCT: Randomized controlled trial

RCOG: Royal college of Obstetricians and

Gynecologists

SNAP: S nitroso-N-acetyl-penicillamine

SNP: Sodium nitroprusside

SOD: Superoxide dismutase

TENS: Transcutaneous nerve stimulation

TGF- β : Transforming growth factor- β

LIST OF TABLES

Table (1): Bishop Scoring System Used for Assessment
of Inducibility, Quoted from Williams Obstetrics,
200539
Table (2): Properties of NOS
55
Table (3): Postulated roles of endogenous NO: 59
Table (4): Comparison between the two studied groups
regarding age and gestational age111
Table (5): Comparison between the two studied groups
regarding indications for induction of labor 111
Table (6): Comparison between the two studied groups
regarding duration of first, second and third stage of
labor 113
Table (7): Comparison between the two studied groups
regarding Time from drug administration till end of latent
phases and time from drug administration till vaginal
delivery 115
Table (8): Comparison between the two studied groups
regarding changes in modified bishop"s score after 2
hours, 4hours, 6hours and 8 hours. 117
Table (9): Comparison between the two studied groups
regarding mode of delivery118
Table (10): Comparison between the two studied groups
regarding causes of cesarean sections. 119

Table (11): Comparison between the two studied groups regarding fetal weight
Table (13): Comparison between the two studied groups regarding maternal complications. 122
Table (14): Comparison between the two studied groups regarding fetal complications. 123
Table (15): Comparison between the two groups regarding total number of tab. Used, MABP, and pulse at admission and after treatment 124
Table (16): Comparison between the two studied groups regarding MABP and pulse at admission and after treatment. 125

LIST OF FIGURES

Figure (1): A cross-sectional view of the cervix
Figure (2): Different cut sections and the E/M view of the
cervix9
Figure (3): A: Schematic diagram showing how the
tropocollagens are composed of 3-α chains, cross-linked and
staggered to give rise to light and dark bands on electron
microscopy 11
Figure (4): Cervidil vaginal insert contains 10 mg of
dinoprostone25
Figure (5): A major source of collagenase is the neutrophil
which contains MMP-8 (neutrophil collagenase) in specific
granules 34
Figure (6): The internal os of the cervix, where ripening starts,
lies in close proximity to the fetal membranes
35
Figure (7): Changes in the cervical stroma and epithelia during
the remodeling process 37
Figure (8): Proposed model for the functions of hyaluronan in
cervical remodeling 38
Figure (9): Electron micrographs of the cervix illustrating the
changes in morphology resulting in cervical ripening with the
onset of parturition40
Figure (10): Extra-amnionic saline infusion (EASI) through 26F
Foley catheter is placed through the cervix.
45
Figure (11): Cervical ripening using balloncatheter46

Figure (12): The synthesis of nitric oxide (NO) from L-arginine53
Figure (13): Scheme showing constitutive release of NO 55
Figure (14): Effect of no. on vascular smooth muscle cells
60
Figure (15): Metabolic pathway of ISMN
Figure (16): Comparison between the two studied groups
regarding age of patients 112
Figure (17): Comparison between the two studied groups
regarding gestational age 112
Figure (18): Comparison between the two studied groups
regarding indications for induction of labor113
Figure (19): Comparison between the two studied groups
regarding the time of 1st stage of labor 114
Figure (20): Comparison between the two studied groups
regarding the time of 2nd. and 3rd. stage of labor.
Figure (21): Comparison between the two studied groups
regarding the time interval from drug administration till vaginal
delivery 116
Figure (22): Comparison between the two studied groups
regarding the time from drug administration till end of latent
phase 116
Figure (23): Comparison between the two studied groups
regarding the changes in the modified bishop's score after 2
hours, 4 hours, 6 hours and 8 hours 117

INTRODUCTION

Introduction

Artificial cervical ripening is a component part of induction of labor that is used when the cervix is unfavorable to facilitate cervical dilation when labor is established. Because the success of induction is related to cervical ripening, artificial cervical ripening before labor induction is used to reduce the associated risk of cesarean delivery (*Osman et al.*, 2006).

Induction of labor (IOL) in the presence of an unripe cervix is associated with failed induction, failure to progress in labor, and an increased risk of chorioamnionitis and cesarean section (CS) (*Furukan et al.*, 2007).

The drugs commonly used in hospital settings, such as prostaglandins E2 (PGE2, dinoprostone) and prostaglandin E1 (PGE1, misoprostol), are effective for cervical ripening. However, the high incidence rates of myometrial hyperstimulation, uterine hypertonus, tachysystole, and fetal distress associated with their use (*Agarwal et al.*, 2012).

In contrast to prostaglandins, nitric oxide donors such as isosorbide mononitrate (IMN) and glyceryl trinitrate inhibit rather than stimulate uterine contractions, and promote rather than restrict uterine blood flow. Therefore, nitric oxide donors appear to be the ideal cervical ripening agent for outpatient use (*Ekerhovd et al.*, 2003).

Isosorbide mononitrate 40 mg is originally an orally administered medicine, marketed and registered for use in the prevention and treatment of angina pectoris. However, its observed uterine tocolytic and cervical ripening effects suggest its possible role in pre-induction cervical ripening (*Habib et al. 2008*).

The major physiological effect of nitric oxide (a free radical gas with a half-life of less than four seconds) is the relaxation of smooth muscle. Nitric oxide itself is endogenously supplied from L-arginine through the action of the nitric oxide synthase (NOS), which has been identified as being present in the human cervix. This NO product reacts with soluble guanylate cyclase, the product of which raises the concentration of intracellular cyclic guanosine monophosphate (cGMP). cGMP causes the dephosphorylation of myosin light chains within the smooth muscle structure leading to its relaxation. Significantly, the cervix is largely composed of connective tissue, including smooth muscle. Previous studies have confirmed that this smooth muscle component of the cervix has a functional role in cervical ripening (*Kelly et al.*, 2011).

Review of Literature

Morphology of human cervix

Anatomy and Embryology of the cervix:

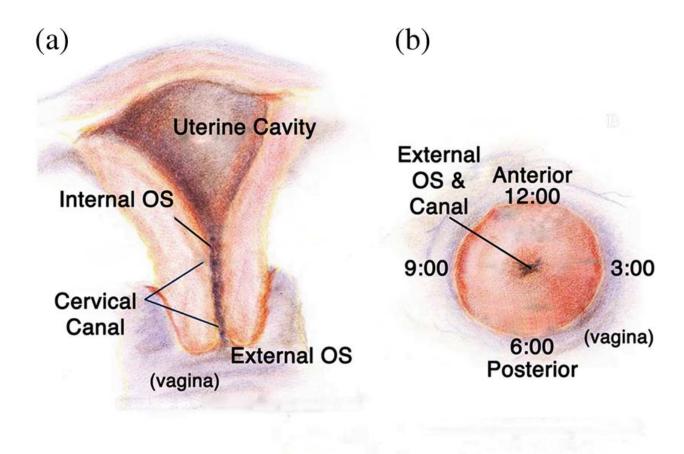
The human female reproductive tract is a complex multifunction organ system that passes through its most critical developmental stages in the first 12 weeks of gestation (McFadden et al., 1992).

The formation of the urorectal septum subdivides the primitive cloaca and distinguishes the anorectal and urogenital sinus (Paidas et al.,1999).

Development begins between the third and fifth gestational weeks, when the metanephric ducts emerge and connect with the cloaca. Between the fourth and fifth weeks, two ureteric buds develop distally from the mesonephric ducts and begin to grow cephalad toward the mesonephros. Mullerian (paramesonephric) ducts form bilaterally between the developing gonad and the mesonephros. The mullerian ducts extend downward and laterally to the mesonephric ducts, and they finally turn medially to meet and fuse together in the midline. The fused mullerian duct descends to the urogenital sinus to join the mullerian tubercle.

The uterus is formed by the union of the two mullerian ducts at about the 10th week. The vagina forms between the urogenital sinus and the mullerian tubercle by a dissolution of the cell cord between the two structures. It is believed that this dissolution starts at the hymen and moves upward toward the cervix.

(Cunningham et al., 2005).


Anatomy

Size and shape:

The uterus is located in the pelvic cavity in non-pregnant women and also during first trimester of pregnancy, the later with advancement of pregnancy, it becomes an abdominal organ. It is situated between the bladder on its anterior surface and the rectum on its posterior surface. The uterus resembles a flattened pear in shape. It consists of two major but unequal parts: an upper triangular portion, the body, or corpus; and a lower, cylindrical, or fusiform portion, the cervix, which projects into the vagina. The isthmus is that portion of the uterus between the internal cervical os and the endometrial cavity. It is of special obstetrical significance

because it forms the lower uterine segment during pregnancy (Leppert, 1995; Cunningham et al., 2005).

In the premenarchal girl, the body of the uterus is only half as long as the cervix. In nulliparous women, the cervix is only a little more than a third of the total length of the organ. After menopause, uterine size decreases as a consequence of atrophy of both myometrium and endometrium (*Cunningham et al.*, 2005).

Figure 1: A cross-sectional view of the cervix. The uterus is above the internal os, and the cervix below. The proximal portion of the cervix (closest to the uterus) resides in the pelvis, and the distal portion protrudes into the vagina. The inner cavity is called the endocervical canal and is contiguous with the uterine cavity. (b) Distal portion of the cervix as seen through a speculum. Locations on the cervix are conventionally labeled as if the distal end were the face of a clock(**Reusch et.al.,2013**).