

BLENDING PROCESS FOR SLUDGE THICKENING

A Thesis

Submitted to the Faculty of Engineering Ain Shames University for the Fulfillment of the Requirement of M.Sc. Degree In Civil Engineering

Prepared by ENG. AHMAD MOHAMED ALI AHMAD FERGALA

B.Sc. in Civil Engineering, May 2011 Faculty of Engineering – Ain Shams University – Cairo, EGYPT

Supervisors Prof. Dr. MOHAMED EL HOSSEINY EL NADI,

Professor of Sanitary & Environmental Engineering Faculty of Engineering, Ain Shams University, Cairo, EGYPT

Dr. MOHAMED SOBHY ABD EL-RAHMAN,

Associate professor of Sanitary Engineering Faculty of Engineering, Ain Shams University, Cairo, EGYPT

Dr. SAYED ISMAIL ALI AHMED,

Assistant professor of Sanitary Engineering Faculty of Engineering, Ain Shams University, Cairo, EGYPT

BLENDING PROCESS FOR SLUDGE THICKENING

A Thesis For

The M.Sc. Degree in Civil Engineering (SANITARY & ENVIRONMENTAL ENGINEERING)

by

ENG. AHMAD MOHAMED ALI AHMAD FERGALA

B.Sc. in Civil Engineering, May 2011 Faculty of Engineering – Ain Shams Univeristy – Cairo, EGYPT

THESIS APPROVAL

EXAMINERS COMMITTEE	SIGNATURE
Prof. Dr. Hesham Sayed Abd El-Halim	
Professor of Sanitary Engineering	
Faculty of Engineering, Cairo University	
Prof. Dr. Tarek Ismail Sabry	
Professor of Sanitary & Environmental Engineering	
Faculty of Engineering, Ain Shams University	
Prof. Dr. Mohamed El Hosseiny El Nadi	
Professor of Sanitary & Environmental Engineering	
Faculty of Engineering, Ain Shams University	
	Date:/2014

Dedication

This thesis is dedicated to all the close, special and beautiful people in my life.

A special dedication to

My supportive parents

And to

My dear Sister and Grandmother

And finally
Special dedication to

My wife

Thank you for encouraging me to complete this work and for always being there for me.

STATEMENT

This dissertation is submitted to Ain Shams University, Faculty of Engineering for the degree of M.Sc. in Civil Engineering.

The work included in this thesis was carried out by the author in the department of Public Works, Faculty of Engineering, Ain Shams University, from October 2012 to May 2014.

No part of the thesis has been submitted for a degree or a qualification at any other University or Institution.

The candidate confirms that the work submitted is his own and that appropriate credit has been given where reference has been made to the work of others

Date: - ---/-- /2014

Signature: - -----

Name: - AHMAD MOHAMED ALI AHMAD FERGALA

ACKNOWLEDGMENTS

First, thanks are all direct to Allah, for blessing this work until it has reached its end, as a part of generous help throughout my life.

It is with immense gratitude that I acknowledge the support and help of **Professor Dr. Mohamed El Hossieny El Nadi**, Professor of Sanitary & Environmental Engineering Faculty of Engineering, Ain Shams University, this thesis wouldn't have been possible unless his great efforts, meticulous revision, scientific guidance and tremendous support.

I am profoundly grateful to **Dr. Mohamed Sobhy Abd El-Rahman**, Associate Professor of Sanitary Engineering, Faculty of Engineering, Ain Shams University, for her close and kind supervision, constructive criticism, true encouragement and keen interest in the progress and accomplishment of this work. I am thankful for all the time and effort she gave me.

I would like to thank **Dr. Sayed Ismail Ali Ahmed**, Assistant Professor of Sanitary Engineering, Faculty of Engineering, Ain Shams University, for his sincere help and guidance, true encouragement and keen interest in the progress and accomplishment of this work. I am thankful for all the time and effort he gave me

Last but not least, sincere thanks to the staff and personnel of Sanitary Engineering Section, Faculty of Engineering, Ain Shams University, especially Tech. Khalid Abd El-Latif for facilities, encouragement and cooperation during the preparation of this study

ABSTRACT

Name: AHMAD MOHAMED ALI AHMAD FERGALA
Title: "BLENDING PROCESS FOR SLUDGE
THICKENING"

Faculty: Faculty of Engineering, Ain Shams University.

Specialty: Civil Eng., Public Works, Sanitary & Environmental Eng.

Abstract:-

The objective of this thesis is to study the blending process as a method for increasing the efficiency of the gravity thickener. The problem is that in Egypt in many wastewater treatment plants the gravity thickener efficiency is lower than expected, the solids outlet is lower than expected especially when the primary and secondary sludge are mixed together. In this thesis, the blending method using dilution water (effluent water from Al Gabal Al Asfar wastewater treatment plant) before thickening to increase the efficiency of the gravity thickener was studied.

The thesis shows that the blending by addition of dilution water to the mixed sludge is not suitable for the sludge produced in this wastewater treatment plant.

In addition; the results shows that there is no increase in the thickening efficiency with the addition of the dilution water.

The thesis studied three different mixing ratios between the primary and secondary sludge 2:8, 4:6 and 3:7 (the actual ratio in the WWTP) and found that the ratio 4:6 gives the best thickening efficiency.

The results explained that it is not suitable to increase the retention time in the gravity thickener when the primary and secondary sludge are mixed together and when the dilution water is added to them.

SUPERVISORS

Prof.Dr. Mohamed El Hosseiny El Nadi, Associate Prof. Dr. Mohamed Sobhy Abd El-Rahman, Assistant Prof. Dr. Sayed Ismail Ali Ahmed.

KEY WORDS

Wastewater Treatment, Sludge Treatment, Gravity Thickener.

TABLE OF CONTENTS

COVER	Page
APPROVAL COMMITTEE	ii
DEDICATION	iii
STATEMENT	iv
ACKNOWLEDGMENTS	V
ABSTRACT	vi
TABLE OF CONTENTS	vii
LIST OF FIGURES	X
LIST OF TABLES	xiv
CHAPTER I: INTRODUCTION	
1.1. BACKGROUND	1
1.2. STUDY OBJECTIVES	2
1.3. SCOPE OF WORK	2
1.3.1. THEORETICAL PART	2 2
1.3.2. EXPERIMINTAL PART	3
1.4. THESIS ORGANIZATION	3
1.4. THESIS ONGANIZATION	3
CHAPTER II : LITERATURE REVIEW	
2.1. INTRODUCTION	5
2.2. ORIGIN OF SLUDGE	6
2.3. TYPES OF SLUDGE	6
2.3.1. RAW SLUDGE	7
2.3.1.1. Septage Sludge	7
2.3.1.2. Primary Sludge	8
2.3.1.3. Secondary sludge	9
2.3.1.4. Mixed sludge	9
2.3.1.5. Chemical sludge	10
2.3.1.6. Other Residual Wastes	10
2.3.2. TREATED SLUDGE	11
2.3.2.1. Thickened Sludge	11
2.3.2.2. Digested Sludge	11
2.3.2.3. Conditioned Sludge	12
2.3.3.4. Mixed Sludge With Solid Waste For Composting	12
2.4. SLUDGE TREATMENT	12
2.4.1. SLUDGE CONDITIONING	13
2.4.1.1. Factors Affecting Sludge Conditioning	13
2.4.1.2 Chemical Conditioning	15
2.4.1.3. Other Conditioning Methods	16

2.4.2.	SLUDGE THICKENING	17
2.4.3.	SLUDGE DIGESTION	18
2.4.3.1.	Anaerobic Digestion	19
2.4.3.2.	Aerobic Digeestion	21
2.4.4.	SLUDGE DEWATERING	24
2.4.4.1.	Centrifugal Dewatering	24
2.4.4.2.	Belt Filter Press	24
2.4.4.3.	Drying Beds	25
2.5.	TYPES OF THICKENING	26
2.5.1.	GRAVITY THICKENING	26
2.5.2.	DISSOLVED AIR FLOTATION	27
2.5.3.	CENTRIFUGAL THICKENING	28
2.5.4.	GRAVITY BELT THICKENING	29
2.5.4.	ROTARY DRUM THICKENING	29
2.6.	GRAVITY THICKENER	30
2.6.1.	DESIGN OF THICKENER	30
2.6.2.	ADVANTAGES	32
2.6.3.	DISADVANTGES	32
2.6.4.	PROBLEMS OF GRAVITY THICKENERS IN EGYPT	33
2.7.	BLENDING	33
	ER III: MATERIALS AND METHODS	
3.1	EXPERIMENTAL WORK PLAN	36
3.2		36
3.2.1		36
3.2.2	SAMPELING	37
3.2.3		38
3.3	PILOT SCALE EXPERIMENTS	40
3.3.1	PILOT DESCRIPTION	40
3.3.2		42
3.3.3		42
3.3.4	MEASURMENTS	43
3.4	ANALATICAL MEASURMENTS	44
CILADI	DED IV. DECLII TO	
	ER IV: RESULTS	47
4.1.	GENERAL DESIL TS OF BLIASE I	47
4.2.	RESULTS OF PHASE I	47
4.2.1.	RESULTS OF PHASE I PART I	47
4.2.1.1.		48
4.2.1.2.		49
4.2.1.3.	Results Of Phase I Part I Run III	50

4.2.1.3.	Results Of Phase I Part I Run IV	51
4.2.2.	RESULTS OF PHASE I PART II	52
4.2.2.1.	Results Of Phase I Part II Run V	52
4.2.2.2.	Results Of Phase I Part II Run VI	54
4.2.2.3.	Results Of Phase I Part II Run VII	56
4.2.2.4.	Results Of Phase I Part II Run VIII	57
4.2.2.4.	Results Of Phase I Part II Run IX	59
4.3.	RESULTS OF PHASEII	61
4.3.1.	RESULTS OF PHASE II RUN I	61
4.3.2.	RESULTS OF PHASE II RUN II	63
4.3.3.	RESULTS OF PHASE II RUN III	65
4.3.1.3.	RESULTS OF PHASE II RUN IV	66
СНАРТ	ER V: DISCUSSION	
5.1.	OVERVIEW	68
5.2.	PHASE I RESULTS DISCUSSION	68
5.2.1.	PHASE I PART I RESULTS DISCUSSION	68
5.2.1.1.	Phase I Part I Run I Results Discussion	68
5.2.1.2.	Phase I Part I Run II Results Discussion	70
5.2.1.3.	Phase I Part I Run III Results Discussion	72
5.2.1.4.	Phase I Part I Run IV Results Discussion	74
5.2.2.	PHASE I PART II RESULTS DISCUSSION	77
5.2.2.1.	Phase I Part II Run V Results Discussion	78
5.2.2.2.	Phase I Part II Run VI Results Discussion	82
5.2.2.3.	Phase I Part II Run VII Results Discussion	86
5.2.2.4.	Phase I Part II Run VIII Results Discussion	90
5.2.2.5.	Phase I Part II Run IX Results Discussion	94
5.3.	PHASE II RESULTS DISCUSSION	98
5.3.1.	PHASE II RUN I RESULTS DISCUSSION	99
5.3.2	PHASE II RUN II RESULTS DISCUSSION	102
5.3.3	PHASE II RUN III RESULTS DISCUSSION	106
5.3.4	PHASE II RUN IV RESULTS DISCUSSION	109
СНАРТ	ER VI: CONCLUSION	
6.1. C	OVERVIEW	113
	CONCLUSION	114
6.3. R	RECOMMENDATIONS	115
6.4. F	URTHER WORK	115
REFER	ENCES	117

LIST OF FIGURES

Figure		Page
CHAPTER II	: LITERATURE REVIEW	
Figure (2/1):	Estimated Values of biosolids uses and disposals	5
Figure (2/2):	Sources and types of solids generated in wastewater	
	treatment plants	7
Figure (2/3):	Biosolids Stages of a Wastewater Treatment Plant	13
Figure (2/4):	Thickening and Sludge Volume Change	17
Figure (2/5):	Reaction in anaerobic digestion	19
Figure (2/6):	Anaerobic digester tank design	20
Figure (2/7):	Circular Aerobic Digester	23
Figure (2/8):	Belt filter press	25
Figure (2/9):	Natural drying bed	26
Figure (2/10):	Gravity Thickener	27
Figure (2/11):	Dissolved air flotation system	28
Figure (2/12):	Centrifugal Thickener	29
Figure (2/13):	Gravity belt thickening	29
Figure (2/13):	Blending Tank	34
CHAPTER III	: MATERIALS AND METHODS	
Figure (3/1):	Jar test apparatus	37
Figure (3/2):	Sampling System	38
Figure (3/3):	Pilot description	41
Figure (3/4):	Pilot installed in the field	42
Figure (3/5):	Pilot working during run I	42
Figure (3/6):	Drying oven	44
Figure (3/7):	Muffle furnace	45
Figure (3/8):	Sensitive balance	45
Figure (3/9):	Centrifuge apparatus	46
CHAPTER IV:	RESULTS	
Figure (4/1):	Water ratio versus total and coarse solids in the	
	supernatant in run I	48
Figure (4/2):	Water ratio versus total and coarse solids in the	
	supernatant in run II	
		49

Figure (4/3):	Water ratio versus total and coarse solids in the supernatant in run III	50
Figure (4/4):	Water ratio versus total and coarse solids in the	30
1 1guic (+/+).	supernatant in run IV	52
Figure (4/5):	Water ratio versus total solids, TFS, TVS in the	
 (445)	supernatant in run V	53
Figure (4/6):	Water ratio versus total solids, coarse, colloidal, dissolved	54
Figure (4/7):	solids in the supernatant in run V Water ratio versus total solids, TVS, TFS in the	34
1 1guic (+/ /).	supernatant in run VI	55
Figure (4/8):	Water ratio versus total solids, coarse, colloidal, dissolved	
	solids in the supernatant in run VI	56
Figure (4/9):	Water ratio versus total solids, TVS, TFS in the	
F' (4/10)	supernatant in run VII	57
Figure (4/10):	Water ratio versus total solids, coarse, colloidal,	57
Figure (4/11):	dissolved solids in the supernatant in run VII Water ratio versus total solids, TVS, TFS in the	57
11gure (4/11).	supernatant in run VIII	59
Figure (4/12):	Water ratio versus total solids, coarse, colloidal, dissolved	
	solids in the supernatant in run VIII	59
Figure (4/13):	Water ratio versus total solids, TVS, TFS in the	
	supernatant in run IX	60
Figure (4/14):	Water ratio versus total solids, coarse, colloidal, dissolved	<i>c</i> 1
Eigung (4/15).	solids in the supernatant in run IX	61
Figure (4/15):	Retention time versus total solids, TVS in the supernatant in run I	62
Figure (4/16):	Retention time versus total solids, coarse, colloidal,	02
118010 (1110).	dissolved solids in the supernatant in run I	63
Figure (4/17):	Retention time versus total solids, TVS, TFS in the	
	supernatant in run II	64
Figure (4/18):	Retention time versus total solids, coarse, colloidal,	
F' (4/10)	dissolved solids in the supernatant in run II	64
Figure (4/19):	Retention time versus total solids, TVS, TFS in the	65
Figure (4/20):	supernatant in run III Retention time versus total solids, coarse, colloidal,	65
1 iguic (4/20).	dissolved solids in the supernatant in run III	66
Figure (4/21):	Retention time versus total solids, TVS, TFS in the	
	supernatant in run IV	67
Figure (4/22):	Retention time versus total solids, coarse, colloidal,	
	dissolved solids in the supernatant in run IV	67

CHAPTER V:	DISCUSSION	
Figure (5/1):	Percentage of settled solids versus water ratio in run I	69
Figure (5/2):	Supernatant coarse fraction ratio versus water ratio in run I	70
Figure (5/3):	Percentage of settled solids versus water ratio in run II	71
Figure (5/4):	Supernatant coarse fraction ratio versus water ratio in run II	72
Figure (5/5):	Percentage of settled solids versus water ratio in run III	73
Figure (5/6):	Supernatant coarse fraction ratio versus water ratio in run III	74
Figure (5/7):	Percentage of settled solids versus water ratio in run IV	75
Figure (5/8):	Supernatant coarse fraction ratio versus water ratio in run IV	76
Figure (5/9):	Gas bubbles appearing in the supernatant	77
Figure (5/10):	Percentage of settled solids versus water ratio in run V	80
Figure (5/11):	Water ratio versus percentage of TSS in the supernatant in run V	80
Figure (5/12):	Water ratio versus coarse, colloidal, dissolved solids percentages in the supernatant in run V	81
Figure (5/13):	Water ratio versus volatile and fixed solids percentages in the supernatant in run V	81
Figure (5/14):	Percentage of settled solids versus water ratio in run VI	84
Figure (5/15):	Water ratio versus percentage of TSS in the supernatant in run VI	84
Figure (5/16):	Water ratio versus coarse, colloidal, dissolved solids percentages in the supernatant in run VI	85
Figure (5/17):	Water ratio versus volatile and fixed solids percentages in the supernatant in run VI	85
Figure (5/18):	Percentage of settled solids versus water ratio in run VII	88
Figure (5/19):	Water ratio versus percentage of TSS in the supernatant in run VII	88
Figure (5/20):	Water ratio versus coarse, colloidal, dissolved solids	
<i>c</i> , ,	percentages in the supernatant in run VII	89
Figure (5/21):	Water ratio versus volatile and fixed solids percentages in the supernatant in run VII	89
Figure (5/22):	Percentage of settled solids versus water ratio in run VIII	92
Figure (5/23):	Water ratio versus percentage of TSS in the supernatant in run VIII	92
Figure (5/24):	Water ratio versus coarse, colloidal, dissolved solids percentages in the supernatant in run VIII	93
Figure (5/25):	Water ratio versus volatile and fixed solids percentages in	

the supernatant in run VIII

93

Figure (5/26):	Percentage of settled solids versus water ratio in run IX	96
Figure (5/27):	Water ratio versus percentage of TSS in the supernatant in	
	run IX	96
Figure (5/28):	Water ratio versus coarse, colloidal, dissolved solids	
	percentages in the supernatant in run IX	97
Figure (5/29):	Water ratio versus volatile and fixed solids percentages in	
	the supernatant in run IX	97
Figure (5/30):	Washout of sludge appearing in the supernatant	98
Figure (5/31):	Retention time versus percentage of settled solids in the	
	in run I	100
Figure (5/32):	Retention time versus percentage of TSS in the	
118010 (0,02).	supernatant in run I	101
Figure (5/33):	Retention time versus coarse, colloidal, dissolved solids	101
1 18410 (5/55).	percentages in the supernatant in run I	101
Figure (5/34):	Retention time versus volatile and fixed solids	101
1 1guic (3/34).	percentages in the supernatant in run I	102
Figure (5/35):	Retention time versus percentage of settled solids in the in	102
1 iguie (3/33).	run II	104
Figure (5/36):	Retention time versus percentage of TSS in the	104
11gule (3/30).	supernatant in run II	104
Figure (5/37):	Retention time versus coarse, colloidal, dissolved solids	104
rigule (3/37).		105
Figure (5/29).	percentages in the supernatant in run II	103
Figure (5/38):	Retention time versus volatile and fixed solids	105
Figure (5/20).	percentages in the supernatant in run II	103
Figure (5/39):	Retention time versus percentage of settled solids in the in	107
F' (5/40)	run III	107
Figure (5/40):	Retention time versus percentage of TSS in the	100
F' (5/41)	supernatant in run II	108
Figure (5/41):	Retention time versus coarse, colloidal, dissolved solids	100
F: (5/40)	percentages in the supernatant in run III	108
Figure (5/42):	Retention time versus volatile and fixed solids	100
F: (5/40)	percentages in the supernatant in run III	109
Figure (5/43):		
	run IV	111
Figure (5/44):	Retention time versus percentage of TSS in the	
	supernatant in run IV	111
Figure (5/45):	Retention time versus coarse, colloidal, dissolved solids	
	percentages in the supernatant in run IV	112
Figure (5/46):	Retention time versus volatile and fixed solids	
	percentages in the supernatant in run IV	112

LIST OF TABLES

Table		Page
CHAPTER II	I: LITERATURE REVIEW	
Table (2/1):	Primary Sludge Characteristics	8
Table (2/2):	Activated Sludge Characteristics	9
Table (2/3):	Thickening Methods In Sludge Processing	18
Table (2/4):	Gravity Thickener Design Criteria	31
Table (2/5):	Factors Affecting Gravity Thickening Performance	31
CHAPTER I	V: RESULTS	
Table (4/1):	Phase I Part I Run I Raw sludge Analysis	48
Table (4/2):	Phase I Part I Run I Supernatant Analysis	48
Table (4/3):	Phase I Part I Run II Raw sludge Analysis	49
Table (4/4):	Phase I Part I Run II Supernatant Analysis	49
Table (4/5):	Phase I Part I Run III Raw sludge Analysis	50
Table (4/6):	Phase I Part I Run III Supernatant Analysis	50
Table (4/7):	Phase I Part I Run IV Raw sludge Analysis	51
Table (4/8):	Phase I Part I Run IV Supernatant Analysis	51
Table (4/9):	Phase I Part II Run V Raw sludge Analysis	53
Table (4/10):	Phase I Part II Run V Supernatant Analysis	53
Table (4/11):	Phase I Part II Run VI Raw sludge Analysis	54
Table (4/12):	Phase I Part II Run VI Supernatant Analysis	55
Table (4/13):	Phase I Part II Run VII Raw sludge Analysis	56
Table (4/14):	Phase I Part II Run VII Supernatant Analysis	56
Table (4/15):	Phase I Part II Run VIII Raw sludge Analysis	58
Table (4/16):	Phase I Part II Run VIII Supernatant Analysis	58
Table (4/17):	Phase I Part II Run IX Raw sludge Analysis	60
Table (4/18):	Phase I Part II Run IX Supernatant Analysis	60
Table (4/19):	Phase II Run I Raw sludge Analysis	61
Table (4/20):	Phase II Run I Supernatant Analysis	62
Table (4/21):	Phase II Run II Raw sludge Analysis	63
Table (4/22):	Phase II Run II Supernatant Analysis	63
Table (4/23):	Phase II Run III Raw sludge Analysis	65
Table (4/24):	Phase II Run III Supernatant Analysis	65
Table (4/25):	Phase II Run IV Raw sludge Analysis	66
Table (4/26):	Phase II Run IV Supernatant Analysis	66

CHAPTER V:	DISCUSSION	
Table (5/1):	Phase I Part I Run I Settled Solids Percentage	69
Table (5/2):	Phase I Part I Run I Coarse Solids Percentage	69
Table (5/3):	Phase I Part I Run II Settled Solids Percentage	71
Table (5/4):	Phase I Part I Run II Coarse Solids Percentage	71
Table (5/5):	Phase I Part I Run III Settled Solids Percentage	72
Table (5/6):	Phase I Part I Run III Coarse Solids Percentage	73
Table (5/7):	Phase I Part I Run IV Settled Solids Percentage	74
Table (5/8):	Phase I Part I Run IV Coarse Solids Percentage	75
Table (5/9):	Phase I Part II Run V Settled Solids Percentage	78
Table (5/10):	Phase I Part II Run V TSS Percentage	78
Table (5/11):	Phase I Part II Run V Coarse, Colloidal, Dissolved Solids	
	Percentage in Supernatant	79
Table (5/12):	Phase I Part II Run V Volatile and Fixed Solids	
	Percentage in Supernatant	79
Table (5/13):	Phase I Part II Run VI Settled Solids Percentage	82
Table (5/14):	Phase I Part II Run VI TSS Percentage	83
Table (5/15):	Phase I Part II Run VI Coarse, Colloidal, Dissolved Solids	
	Percentage in Supernatant	83
Table (5/16):	Phase I Part II Run VI Volatile and Fixed Solids	
	Percentage in Supernatant	83
Table (5/17):	Phase I Part II Run VII Settled Solids Percentage	86
Table (5/18):	Phase I Part II Run VII TSS Percentage	86
Table (5/19):	Phase I Part II Run VII Coarse, Colloidal, Dissolved	
	Solids Percentage in Supernatant	87
Table (5/20):	Phase I Part II Run VII Volatile and Fixed Solids	
	Percentage in Supernatant	87
Table (5/21):	Phase I Part II Run VIII Settled Solids Percentage	90
Table (5/22):	Phase I Part II Run VIII TSS Percentage	90
Table (5/23):	Phase I Part II Run VIII Coarse, Colloidal, Dissolved	
	Solids Percentage in Supernatant	91
Table (5/24):	Phase I Part II Run VIII Volatile and Fixed Solids	
	Percentage in Supernatant	91
Table (5/25):	Phase I Part II Run IX Settled Solids Percentage	94
Table (5/26):	Phase I Part II Run IX TSS Percentage	94
Table (5/27):	Phase I Part II Run IX Coarse, Colloidal, Dissolved Solids	
	Percentage in Supernatant	95
Table (5/28):	Phase I Part II Run IX Volatile and Fixed Solids	
	Percentage in Supernatant	95
Table (5/29):	Phase II Run I Settled Solids Percentage	99
Table (5/30):	Phase II Run I TSS Percentage	99
Table (5/31):	Phase II Run I Coarse, Colloidal, Dissolved Solids	99