

MODIFICATION OF ACTIVATED SLUDGE SYSTEM FOR OPTIMUM REMOVAL OF NUTRIENTS

A Thesis

Submitted to the Faculty of Engineering Ain Shams University for the Fulfillment of the Requirement of Ph. Degree in Civil Engineering

Prepared by

ENG. MOSTAFA MOAWED MOSTAFA

M.Sc. of Civil Engineering, May 2008 Faculty of Engineering, Cairo University

Supervisors Prof. Dr. HAMDY IBRAHIM ALI

Professor of Sanitary & Environmental Engineering Faculty of Engineering, Ain Shams University, Cairo, EGYPT

Prof. Dr. MAHMOUD MOHAMED ABDEL AZEEM

Professor of Sanitary & Environmental Engineering Faculty of Engineering, Ain Shams University, Cairo, EGYPT

Dr. MOHAMED SOBHI ABDEL RAHMAN

Associate Professor of Sanitary & Environmental Engineering Faculty of Engineering, Ain Shams University, Cairo, EGYPT

Dr. ALAA OMAR LOTFY

Lecturer of Sanitary & Environmental Engineering Faculty of Engineering, Fayoum University, Fayoum, EGYPT

MODIFICATION OF ACTIVATED SLUDGE SYSTEM FOR OPTIMUM REMOVAL OF NUTRIENTS

A Thesis For

The Ph. Degree in Civil Engineering (SANITARY ENGINEERING)

by

ENG. MOSTAFA MOAWED MOSTAFA

M.Sc. of Civil Engineering, May 2008 Faculty of Engineering, Cairo University

THESIS APPROVAL

EXAMINERS COMMITTEE	SIGNATURE
Prof. Dr. HAMDY IBRAHIM ALI	
Professor of Sanitary & Environmental	
Engineering, Faculty of Engineering, Ain	
Shams University, Egypt.	
Prof. Dr. FIKRY HALIM GOBRIAL	
Professor of Sanitary & Environmental	
Engineering, Faculty of Engineering, Ain	
Shams University, Egypt.	
Prof. Dr. MOSTAFA MOHAMED	
ABDEL WARITH	
Professor of Sanitary & Environmental	
Engineering, Faculty of Engineering,	
Ryerson University, Canada.	

DEDICATION

I wish to dedicate this work to who suffered to educate, prepare, build capacity and help myself to be as I am,

TO MY MOTHER AND MY FATHER

Also thanks

TO MY WIFE

for her encouragement and support to complete this work

STATEMENT

This dissertation is submitted to Ain Shams University, Faculty of Engineering for the degree of Ph.D in Civil Engineering.

The work included in this thesis was carried out by the author in the department of Public Works, Faculty of Engineering, Ain Shams University, from September 2008 to January 2014.

No part of the thesis has been submitted for a degree or a qualification at any other University or Institution.

The candidate confirms that the work submitted is his own and that appropriate credit has been given where reference has been made to the work of others

> Date: - ---/-- /2014 Signature: - -------

Name: - MOSTAFA MOAWED MOSTAFA GAD

<u>ACKNOWLEDGMENT</u>

First and foremost I am thankful to Allah the Almighty GOD for his grace and mercy.

I owe sincere gratitude and express my admiration to my supervisor **Prof. Dr. Hamdy Ibrahim Ali**, Professor of sanitary and Environmental Engineering, Ain Shams University, for all his patience, guidance, endless help during this research progress and sharp criticism that were very opportune in critical moments.

I would like to express my deepest appreciation to my distinguished supervisor **Prof.Dr. Mahmoud Mohamed Abdel Azeem**, Professor of sanitary and Environmental Engineering, Ain Shams University, for his diligent effort, help, motivation and enthusiasm he transmitted to me during the development of this work.

And deep thanks to **Dr. Mohamed Sobhi Abdel Rahman**, Associate Professor of sanitary and Environmental Engineering, Ain Shams University, for his help, and co-operation during the preparation of this research.

And deep thanks to **Dr. Alaa Omar Lotfy,** Lecturer of Sanitary and Environmental Engineering, Faculty of Engineering, Fayoum University, for suggesting the problem, help, encourage, co-operation sponsoring and patient advising during preparation of this research.

I especially wish to thank my family and my wife for all the support and encouragement they gave me particularly during difficult moments. Words can never tell how grateful and thankful I am to my father Mr. Moawed Mostafa. I couldn't have done this work without his help.

ABSTRACT

NAME: MOSTAFA MOAWED MOSTAFA

Title :- "MODIFICATION OF ACTIVATED SLUDGE SYSTEM FOR OPTIMUM REMOVAL OF NUTRIENTS".

Faculty : Faculty of Engineering, Ain Shams University Specialty : Civil Eng., Public Works, Sanitary Engineering

Summary:

The experiment has been performed in order to investigate the effect of using contact stabilization activated sludge as an application of Enhancing Biological Phosphorous Removal (EBPR) by using contact tank as a phosphorus uptake zone and using thickening tank as a phosphorus release zone.

The study involved the construction of pilot plant which setup in Quhafa Wastewater Treatment Plant (WWTP) included contact, final sedimentation, stabilization and thickening tanks respectively with two returns sludge in this system one of them to contact tank and another to stabilization tank. Results showed the removal efficiencies of COD, BOD₅ and TP for this pilot plant with the range of 91%, 92 % and 85 % respectively during the first stage by effecting of 3mg/l influent TP, but during the second stage were with the range of 91%, 93% and 83% respectively by effecting of 5mg/l influent TP and 91%,92% and 83% for COD,BOD₅ and TP respectively under the effect of 8mg/l influent TP during the third stage.

Finally the mechanism of this pilot plant depends on the Removal of the phosphorus from the domestic wastewater as a concentrated TP solution form supernatant above the thickening zone not through waste sludge like traditional systems.

Keywords: Enhancement Biological Phosphorus Removal (EBPR); contact stabilization; activated sludge; phosphorus Accumulating Organisms (PAO), poly-β-hydroxyalkanoates (PHA) and total phosphorus (TP).

TABLE OF CONTENTS

		Page
COVE	3	i
THESI	S APPROVAL	ii
DEDIC	CATION	iii
STATE	EMENT	iv
ACKN	OWLEDGEMENT	V
ABSTE	RACT	vi
TABLE	E OF CONTENTS	vii
LIST C	OF FIGURES	xi
LIST C	OF TABLES	xiii
CHAP	TER I: INTRODUCTION	
1.1	GENERAL	1
1.2	OBJECTIVES OF CURRENT RESEARCH	2
1.3	PLAN OF WORK	2
1.4	THESIS ORGANIZATION	3
CILAD	TER II: LITERATURE REVIEW	
2.1	INTRODUCTION	5
2.1	PHOSPHORUS SOURCES AND ITS STRUCTURE IN	3
4.4	MUNICIPAL WASTEWATER	5
2.3	BASICS OF PHOSPHORUS SOURCE CONTROL	3 7
2.3 2.4		/
4.4	ENVIRONMENT	8
2.5	PHOSPHORUS REMOVAL - PROCESS SCHEMES	8
2.5 2.5.1		9
	CHEMICAL PHOSPHORUS REMOVAL	9
	BIOLOGICAL PHOSPHORUS REMOVAL	10
2.5.1.2	PHOSPHORUS REMOVAL BY CHEMICAL	10
4.0	PRECIPITATION	10
261	PRINCIPLES OF THE PROCESS	11
	CHEMICALS APPLIED	13
	PRECIPITATION WITH LIME	14
	PRECIPITATION WITH IRON SALTS	15
2.6.2.3		13
4.0.4.3	SULFATE	17
2.6.3	PROCESS CONFIGURATION	18
2.0.3	BIOLOGICAL PHOSPHORUS REMOVAL	20
2.7.1	MICROORGANISMS INVOLVED IN THE PROCESS	21
2.7.1	ENHANCED BIOLOGICAL PHOSPHORUS REMOVAL	$\angle 1$
4.0	EMITATION DIOLOGICAL FILOSTITONOS REMOVAL	

	(EBPR)	22
2.8.1	BASIC THEORY	22
2.8.2	PROCESS CONFIGURATIONS	27
2.8.2.1	A/O (PHOREDOX)	27
2.8.2.2	A ² /O (3-STAGE MODIFIED BARDENPHO)	28
2.8.2.3	MODIFIED BARDENPHO (5-STAGE PROCESS)	28
2.8.2.4	UCT (UNIVERSITY OF CAPE TOWN)	29
2.8.2.5	MODIFIED UCT	29
2.8.2.6	VIP (VIRGINIA INITIATIVE PLANT)	30
2.8.2.7	JOHANNESBURG (JHB) PROCESS	31
2.8.2.8	PHOSTRIP	31
2.8.2.9	BIO-DENIPHO	32
2.9	MAIN FACTORS AFFECTING PERFORMANCE OF	
	BIOLOGICAL PHOSPHORUS REMOVAL	34
2.9.1	ANAEROBIC CONDITIONS	34
2.9.2	PHOSPHORUS CONCENTRATION IN A SECONDARY	
	EFFLUENT	34
2.9.3	COMPOSITION OF INCOMING WASTEWATER	35
2.9.4	AVAILABILITY OF EASILY BIODEGRADABLE	
	CARBON SOURCES	35
2.9.5		37
2.9.6	DISSOLVED OXYGEN CONCENTRATION	37
2.9.7	TEMPERATURE	37
2.10	FUTURE DIRECTIONS IN PHOSPHORUS REMOVAL	
	MANAGEMENT	38
2.10.1	PHOSPHORUS IN DETERGENTS AND AS FOOD	
	ADDITIVES	38
	IMPROVED WASTEWATER TREATMENT	39
	DIVERSION OF WASTEWATER STREAMS	40
2.10.4	IMPROVED SLUDGE HANDLING MANAGEMENT	40
	TER III: MATERIALS AND METHODS	
	INTRODUCTION	43
3.2	RESEARCH PROJECT LOCATION	44
3.3	REGIONAL CONDITIONS	44
3.4	EXPERIMENTAL WORK PLAN	45
3.5	LOCATION AND OPERATION CONDITIONS	46
3.6	MODEL DESCRIPTION	46
3.6.1	CONTACT TANK (AEROBIC ZONE)	46
	FINAL SEDIMENTATION TANK	48
3.6.3	STABILIZATION TANK	49
3.6.4	SLUDGE THICKENING TANK	50

3.7	FEEDING SYSTEM ARRANGEMENT	51
3.8	EXPERIMENTAL PROTOCOL	52
3.8.1	STARTUP PERIOD	52
3.8.2	FIRST STAGE (3MG/L TP CONCENTRATION)	53
3.8.3	SECOND STAGE – (5MG/L TP CONCENTRATION)	54
3.8.4	THIRD STAGE – (8MG/L TP CONCENTRATION)	54
3.8.5	SAMPLES COLLECTION	54
3.9	MEASUREMENT	54
3.9.1	TOTAL SUSPENDED SOLIDS (TSS) AND VOLATILE	
	SUSPENDED SOLIDS (VSS)	55
3.9.2	CHEMICAL OXYGEN DEMAND (COD)	56
3.9.3	BIOLOGICAL OXYGEN DEMAND (BOD ₅)	57
3.9.4	TOTAL PHOSPHATE (TP)	57
3.9.5	SOLUBLE ANION PO ⁻³ ₄	59
CHA	PTER IV: RESULTS	
4.1		60
4.2		60
4.2.1		60
4.2.2		62
4.2.3		63
4.2.4		65
4.2.5		66
4.2.6		67
4.2.7	THICKENER TANK PERFORMANCE	67
4.3	EXPERIMENT 2 ND STAGE OF OPERATION	69
4.3.1		69
4.3.2	EFFLUENT TREATED WATER CHARACTERISTICS	70
4.3.3		71
	CONTACT TANK PERFORMANCE	73
	FINAL SEDIMENTATION TANK PERFORMANCE	74
4.3.6		74
4.3.7		75
4.4		77
4.4.1	INFLUENT WASTEWATER CHARACTERISTICS	77
4.4.2	EFFLUENT TREATED WATER CHARACTERISTICS	78
4.4.3	OVERALL SYSTEM PERFORMANCE	79
4.4.4		81
4.4.5		81
	STABILIZATION TANK PERFORMANCE	82
4.4.7	THICKENER TANK PERFORMANCE	82

	TER V: DISCUSSION	
5.1	INTRODUCTION	84
5.2	START UP PERIOD AND 1 ST STAGE	84
5.2.1	REACTOR OPERATION	85
5.2.2.	OVERALL SYSTEM PERFORMANCE	87
5.2.2.1	ORGANIC MATTER REMOVAL EFFICIENCY	87
5.2.2.2	PHOSPHORUS REMOVAL EFFICIENCY	88
5.2.2.3	INFLUENT AND EFFLUENT PH	89
5.2.3	CONTACT TANK PERFORMANCE	89
	THICKENER TANK PERFORMANCE	89
	EXPERIMENT 2 ND STAGE	90
5.3.1	REACTOR OPERATION	90
5.3.2.	OVERALL SYSTEM PERFORMANCE	91
5.3.2.1	ORGANIC MATTER REMOVAL EFFICIENCY	92
5.3.2.2	PHOSPHORUS REMOVAL EFFICIENCY	92
5.3.2.3	INFLUENT AND EFFLUENT PH	92
5.3.3		93
5.4	EXPERIMENT 3 RD STAGE	93
5.4.1	REACTOR OPERATION	93
5.4.2.	OVERALL SYSTEM PERFORMANCE	95
5.4.2.1	ORGANIC MATTER REMOVAL EFFICIENCY	95
5.4.2.2	PHOSPHORUS REMOVAL EFFICIENCY	95
5.4.2.3	INFLUENT AND EFFLUENT PH	96
5.4.3		96
5.5	EFFECT OF VARIABLE INFLUENT TP ON THE SYSTEM	
	PERFORMANCE	96
5.5.1	COD INFLUENT / EFFLUENT REMOVAL EFFICIENCY	96
5.5.2	BOD ₅ INFLUENT / EFFLUENT REMOVAL EFFICIENCY	98
5.5.3	TP INFLUENT / EFFLUENT REMOVAL EFFICIENCY	99
CHAP	TER VI: CONCLUSION	
6.1	INTRODUCTION	100
6.2	CONCLUSIONS	100
6.3	RECOMMENDATIONS	100
REFE	RENCES	102

LIST OF FIGURES

		Page
Figure 2-1.	The reactions under anaerobic conditions occurring	
C	in PAOs	23
Figure 2-2.	The reactions under aerobic (or anoxic) conditions	
C	occurring in PAOs	24
Figure 2-3.	The influence of anaerobic and aerobic conditions	
	over constituents of liquid and cell	24
Figure 2-4.	The reactions under anaerobic conditions occurring	
	in GAOs	26
Figure 2-5.	The A/O process	27
Figure 2-6.	The A ² /O process	28
Figure 2-7.	The 5-stage modified Bardenpho process	28
Figure 2-8.	The UCT process	29
Figure 2-9.	The Modified UCT process	30
Figure 2-10.	The VIP process	30
Figure 2-11.	The Johannesburg process	31
Figure 2-12.	The PhoStrip process	32
Figure 2-13.	The Bio-denipho process	33
Figure 3-1.	Location of pilot plan (A: layout of Quhafa WWTP	
	- B: location of setup model	44
Figure 3-2.	Schematic diagram for pilot plant	46
Figure 3-3.	Contact tank (cross sections)	47
Figure 3-4.	Sedimentation tank (photo / cross sections)	48
Figure 3-5.	Stabilization tank (cross sections)	49
Figure 3-6.	Thickening tank (cross sections).	50
Figure 3-7.	Feeding system schematic layout	52
Figure 3-8.	Schematic diagram for pilot plant arrangement	53
Figure 4-1.	Influent wastewater pH.	60
Figure 4-2.	Influent wastewater COD and BOD ₅ .	61
Figure 4-3.	Influent wastewater total phosphorus.	61
Figure 4-4.	Effluent treated water pH.	62
Figure 4-5.	Treated water COD and BOD ₅ .	62
Figure 4-6.	Effluent treated water TP.	63
Figure 4-7.	COD removal efficiency.	63
Figure 4-8.	BOD removal efficiency.	64
Figure 4-9.	TP removal efficiency.	64
Figure 4-10.	Influent and effluent pH.	65
Figure 4-11.	TP inside contact tank and effluent treated water	
	TP.	65
Figure 4-12.	Solids concentrations inside contact tank.	66
Figure 4-13.	Solids concentrations inside sludge layer at the	66

	bottom of FST.	
Figure 4-14.	Solids concentrations inside stabilization tank.	67
Figure 4-15.	Supernatant TP.	67
Figure 4-16.	Supernatant COD and BOD.	68
Figure 4-17.	Solids concentrations inside sludge layer at the	
	bottom of thickener tank.	68
Figure 4-18.	Influent wastewater COD and BOD ₅ .	69
Figure 4-19.	Influent wastewater total phosphorus.	70
Figure 4-20.	Effluent treated water COD and BOD ₅ .	70
Figure 4-21.	Effluent treated water TP.	71
Figure 4-22.	COD removal efficiency.	71
Figure 4-23.	BOD removal efficiency.	72
Figure 4-24.	TP removal efficiency.	72
Figure 4-25.	Influent and effluent pH.	73
Figure 4-26.	Solids concentrations inside contact tank.	73
Figure 4-27.	Solids concentrations inside sludge layer at the	
	bottom of FST.	74
Figure 4-28.	Solids concentrations inside stabilization tank.	74
Figure 4-29.	Supernatant TP.	75
Figure 4-30.	Supernatant COD and BOD ₅ .	75
Figure 4-31.	Solids concentrations inside sludge layer at the	
	bottom of thickener tank.	76
Figure 4-32.	Influent wastewater COD and BOD ₅ .	77
Figure 4-33.	Influent wastewater total phosphorus.	77
Figure 4-34.	Effluent treated water COD and BOD ₅ .	78
Figure 4-35.	Effluent treated water TP.	78
Figure 4-36.	COD removal efficiency.	79
Figure 4-37.	BOD removal efficiency.	79
Figure 4-38.	TP removal efficiency.	80
Figure 4-39.	Influent and effluent pH.	80
Figure 4-40.	Solids concentrations inside contact tank.	81
Figure 4-41.	Solids concentrations inside sludge layer at the	
	bottom of FST.	81
Figure 4-42.	Solids concentrations inside stabilization tank.	82
Figure 4-43.	Supernatant TP.	82
Figure 4-44.	Supernatant COD and BOD ₅ .	83
Figure 4-45.	Solids concentrations inside sludge layer at the	
	bottom of thickener tank.	83

LIST OF TABLES

		Page
Table 2-1.	Phosphorus compound structure in domestic	
	wastewater.	6
Table 2-2.	Design parameters for biological phosphorus	
	removal processes	33
Table 3-1.	The physical and chemical characteristics of raw	
	waste water in Quhafa WWTP	45
Table 5-1.	Dimensions and actual retention times of the	
	different tanks	85
Table 5-2.	Comparison between Values of Influent & effluent	
	COD removal efficiency	97
Table 5-3.	Comparison between Values of Influent & effluent	
100010 0 01	BOD ₅ removal efficiency	98
Table 5-4.	Comparison between Values of Influent & effluent	, 0
145100 4	TP removal efficiency	99
		,,

CHAPTER (1) INTRODUCTION

1.1 General

Biological phosphorus removal from wastewater is based on the enrichment of activated sludge with phosphate-accumulating organisms (PAOs). To achieve a phosphorus-removing bacterial population in an activated sludge system, exposure of sludge to alternating anaerobic and aerobic (or anoxic) conditions is necessary. Under anaerobic conditions, P removing bacteria convert volatile fatty acids (VFAs) synthesized in the zone by fermenters to polyhydroxybutyrate (PHB) which is stored intracellularly. Under aerobic conditions, stored PHB is used to generate cell growth, poly-P synthesis and glycogen formation and maintenance, resulting in the uptake of phosphate.

The dominant bacteria in the activated sludge system are aerobic heterotrophs that degrade and eventually mineralize organic compounds present in wastewater to carbon dioxide and water. It is the small size of bacteria and their resultant large surface area to volume ratio which makes them efficient in terms of nutrient and catabolic exchange. Heterotrophic bacterial populations remain relatively stable throughout the plant with various environments in the three zones allowing different bacteria to dominate in terms of metabolic activity.

Several early studies have shown that the removal and release of phosphorus within sludge are the results of the dominance of a single genus of bacteria known as *Acinetobacter* spp. and more specifically a single species, *Acinetobacter* calcoaceticus. *Acinetobacter* spp are able to accumulate more phosphate than is required for cell synthesis; the so-called **luxury phosphate uptake**.

Acinetobacter spp. are normally present in activated sludge, but in the minority due to the low growth rate. Acinetobacter organisms prefer VFAs, especially acetate, as a growth substrate which are present or can be produced from wastewaters in an activated sludge system. This is achieved by incorporating an anaerobic zone, mostly