

تبيكة المعلومات الجامعية

Cieria Terris Cieria Coi

ثبكة المعلومات الجامعية

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيل

جامعة عين شمس

التوثيق الالكتروني والميكروفيلم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأفلام قد اعدت دون آية تغيرات

يجب أن

تحفظ هذه الأفلام بعيداً عن الغبار في درجة حرارة من 15 - 20 منوية ورطوبة نسبية من 20-40 %

To be kept away from dust in dry cool place of 15-25c and relative humidity 20-40 %

ثبكة المعلومات الجامعية

نبكة المعلومات الجامعية

بعض الوثائق الأصلية تالفة

RELATIVE INVOLUTIVE **INVARIANTS OF RINGS**

Thesis Submitted for the Degree of Doctor of Philosophy in Science (Pure Mathematics)

By SAFAA MOHAMED MAHMOUD MOUSTAFA

Department of Mathematics Faculty of Education Ain Shams University

SUPERVISORS

Verschoren

Department of Mathematics & Computer Science **RUCA University** Antwerp, Belgium

Prof. Dr. E. M. El-Ghazzy

Department of Mathematics Faculty of Education Ain Shams University

FL Chazzy

To Department of Mathematics

> Faculty of Science Ain Shams University

Cairo, Egypt

1998

Prof. Dr. A. A. Dabbour

Department of Mathematics Faculty of Science Ain Shams University

Prof. Dr. A. G. El-Sakka

Department of Mathematics Faculty of Science

Ain Shams University

To the innernoury of inny MOTHER

Acknowledgements

"FIRST AND FORMOST THANKS ARE TO ALLAH, THE MOST BENFICENT AND MERCIFIL"

I wish to express my gratitude to Prof. Dr. A. Verschoren, Dept. of Maths. and Computer Science, Antwerp University (RUCA), Belgium, who suggested the topic of the thesis, gave me the attention and encouragement required for the completion of this work. It has been most delightful to have worked under a great mathematician who has been for me a source both of information and of inspiration.

Also I would like to express my sincere thanks and profound debt to my supervisor Prof. Dr. Abd El-Sattar A. Dabbour, Maths. Dept., Faculty of Science, Ain Shams Univ., for his willingness, encouragement, his continuous support and for giving so generously of his constructive suggestions and also for giving so generously of his time to complete this thesis in the final form.

I would like to express my gratitude to Prof. Dr. El-Sayed Mohamed El-Ghazzy, Math. Dept., Faculty of Education, Ain Shams Univ., for his encouragement and continuous support.

My thanks also own to Prof. Dr. Ahmed G. El-Sakka, Maths. Dept., Faculty of Science, Ain Shams Univ., for his continuous encouragement and advices.

I would like to record my gratitude to:

- My Family for their understanding and moral support.

- The Egyptian Government for the financial grant.

- The University of Antwerp, (RUCA) for hospitality and facilities extended to me and good treatment from the members of the staff of the Dept. and Secretaries.

- The Dept. of Maths., Faculty of Education, Ain Shams Univ., Cairo, Egypt, for giving me the opportunity to further my education.

· .

Contents.

Contents.

Acknowledgements.

Summary.	i
Chapter 1: Localization.	1
1.1. Radicals	2
1.2. Localization	8
1.3. The relative Picard group	12
1.4. Cohomology of sheaves	20
1.5. Krull domain and divisorial lattices	25
Chapter 2: The Relative Involutive Picard Group.	32
2.1. The relative discriminant group	33
2.2. The involutive Picard group of a ringed space	46
2.3. Geometric interpretation	50
2.4. Application to integrally closed domains	56

Chapter 3: The Relative Involutive Brauer Group.	62
3.1. The relative involutive Brauer group	63
3.2. Some exact sequences	72
3.3. K-Theoretic interpretation	81
Bibliography	98
Arabic Summary	,

SUMMARY

Summary.

Introducing the contents of this thesis is impossible without referring to the fundamental work of A. Verschoren and F. Van Oystaeyen [42], who introduced and studied the theory of relative invariants of commutative rings. One of the fundamental facts on which that theory has been built is that to infer knowledge about the structure of the ring from knowledge about certain invariants. Global invariants like the Picard group or the Brauer group seldom suffice to characterize the base ring, so it is usually necessary to consider more complicated invariants in order to get closer to our goal of obtaining useful structure results for the rings studied. In this thesis we develope an involutive version of the theory of relative invariants, both from an algebraic and a geometric point of view.

One of the classical invariants, as we just mentioned is the Picard group. The category theoretical definition of the Picard group of an abelian category and its elementary properties are well known, [7]. In the module case, however, one may describe this Picard group more explcitly in terms of equivalence classes of invertible projective modules. After that the Gabriel Popescu theorem tells us that any Grothendieck category is equivalent to a quotient category of some module category R-mod with respect to some idempotent kernel functor σ , [17]. Thus one may hope to describe the Picard group of R-mod in terms of invertible modules, but involving the torsion at σ . This is done by A. Verschoren in [44]. In this thesis we aim to study the involutive version of the relative Picard group. We start by studying the notion of σ -discriminant module. This

concept is then used to study the so-called σ -discriminant group; which is shown to coincide with the relative involutive Picard group. In the relative case, the relative involutive Picard group yields the involutive class group, [35], when restricting attention to Krull domains.

On the other hand, why are we interested in algebras with involution at all? The answer is easy: because they appear in almost every branch of mathematics, and whenever appearing, they tend to play a prominent role.

Let us mention an example. It is well known that the Brauer group of a ring is a torsion group, so it is clear that one tries to get some grasp on the group Br(R) by calculating each of its p-torsion subgroups $Br_p(R)$. In this context, algebras with involution come into the picture, due to Saltman's result [36], which states that every element in $Br_2(R)$ may be represented by an Azumaya algebra with involution, a result that was given a more polished treatment later by Knus, Parimala and Srinivas [24] and a geometric interpretion in [34]. In this thesis, we study the relative involutive Brauer group of any commutative ring with respect to an idempotent kernel functor σ . In the global case, this leads to the involutive Brauer group studied by Parimala and Srinivas and by Reyes and Verschoren. In the relative case the relative involutive Brauer group yields the involutive divisorial Brauer group, [35], when restricting to Krull domains.

Let us now give a brief description of the contents of this thesis.

The first chapter provides the necessary background on "abstract" lo-