THE VALUE OF BIOMARKERS, NEUROPHYSIOLOGY AND NEUROPSYCHOLOGY IN DIAGNOSIS AND PROGNOSIS OF MESIAL TEMPORAL SCLEROSIS

Thesis

Submitted for Partial Fulfillment of the Doctorate Degree (M.D.) in **NEUROLOGY**

By

HEBATALLA SAHER ELSAYED HASHEM

(M.B, B.Ch, M.Sc Neuropsychiatry, Cairo University) Assistant Researcher, National Research Center

Supervised by

PROF. DR. FAROUK KOURA

Professor of Neurology, Faculty of Medicine, Cairo University

PROF. DR. NAGWA A MEGUID

Professor of Human Genetics, National Research Center

PROF. DR. HATEM SAMIR

Professor of Neurology, Faculty of Medicine, Cairo University

PROF. DR. MONA ANWAR

Professor of Biochemistry, National Research Center

FACULTY OF MEDICINE CAIRO UNIVERSITY 2014

تقرير جماعي

لجنة المناقشة و الحكم علي رسالة الدكتوراة المقدمة من الطبيبة هبة الله ساهر السيد هاشم توطئة للحصول علي درجة الدكتوراة في الامراض العصبية و المشكلة بقرار من مجلس الكلية و المعتمد من السيد الاستاذ الدكتور نائب رئيس الجامعة للدراسات العليا

و تتكون لجنة الحكم من:

ا د. فاروق قورة استاذ الامراض العصبية - جامعة القاهرة عن المشرفين

ارد. حسن حسني- استاذ الامراض العصبية - جامعة القاهرة (م داخلي)

ا.د. سامية عاشور - استاذ الامراض العصبية - جامعة عين شمس (ممتحن خارجي)

و ذلك بمشيئة الله تعالي يوم الثنين الموافق ٢٠١٤ ٢١٣ و ذلك بقاعة المؤتمرات بكلية الطب – القصر العيني - جامعة القاهرة

و شملت الدراسة: - القيمة التشخيصية و التنبؤية للمؤشرات الحيوية و الفسيولوجيا العصبية و الختبارات النفسية في حالات تصلب الفص الصدغي

قررت اللجنة بعد المناقشة:

ا.د. فاروق محمد قورة

الله در

ا.د. حسن سعد حسني

ا.د. سامیهٔ عاشور ایر کا کی ایر کا کر ا

بسم الله الرحمن الرحيم

ACKNOWLEDGMENT

Thank You GOD for everything

My father Prof. Dr. SAHER HASHEM, My Mother Dr. HALA FARID, my family ... with your unconditional love and support, you leave me speechless, can't thank you enough.

I am honored and privileged to have Prof. Dr. FAROUK KOURA, Professor of Neurology, Cairo University, as my supervisor, Sir you are an idol and words are not enough to thank you for all the support.

I would like to deeply thank my dear Prof. Dr. NAGWA A. MEGUID, Professor of Human Genetics, National Research Center, for her continuous guidance, care and support. Thank You for everything.

I would like to express my sincere gratitude to Prof. Dr. **HATEM SAMIR**, Professor of Neurology, Cairo University, for his fruitful criticism and helping me throughout the entire work.

I take this opportunity to express my deepest regards to Prof. Dr. MONA ANWAR, Professor of Biochemistry, National Research Center, for her meticulous eye, continuous support and efforts.

I would also like to thank Dr. ADEL HASHISH, Researcher, National Research Center, for his contribution to this work and for his willingness to help.

Special Thanks to my colleague and friend, Dr. **REHAB KHALIL**, Researcher, National Research Center, for her support and unrelenting efforts to help me throughout my work.

I am obliged to Staff Members of Epilepsy Clinic at Kasr El-Aini Hospitals and my colleagues at the National Research center for their support and help.

Lastly, My Grandpa Prof. **FARID ROAIAH**, Prof. Dr. **OSAMA ELWAN** and Prof Dr. **OSAMA BARRADA**, you are greatly missed and I so wished to have you with me on this day. I know you would have been glad. May your souls rest in peace.

TO MY FAMILY

CONTENTS

		Page
•	INTRODUCTION	1
•	AIM OF THE WORK	3
•	REVIEW OF LITERATURE	4
	o Epidemiology of temporal lobe epilepsy	4
	o Anatomy of hippocampus	5
	o Neuropathology of temporal lobe epilepsy	
	o Mesial temporal sclerosis and epilepsy	12
	o Inflammation and Mesial temporal lobe epilepsy	18
	o Genetics of Mesial temporal lobe epilepsy	22
	o Semiology of temporal lobe epilepsy	25
	o Electroencephalographic findings	31
	o Biomarkers	33
	 Matrix metalloproteinase-9 	
	Prolactin	
	C-reactive protein	
	S100B calcium binding protein	
	o Temporal lobe epilepsy and cognition	
	o Neuroimaging	
	Prognosis of Mesial temporal lobe epilepsyCo-morbidities	
	SUBJECTS AND METHODS	
•	RESULTS	
_	CASE PRESENTATION	
-		
•	DISCUSSION	
•	SUMMARY AND CONCLUSIONS	110
•	RECOMMENDATIONS	112
•	REFERENCES	113
•	APPENDIX	140
	ARABIC SUMMARY	

LIST OF TABLES

No.	Title	Page
1	Ages of Cases and Controls	68
2	Sex Distribution among Cases and Controls	69
3	Handedness among Cases and Controls	70
4	Anthropometric Measurements among Cases and Controls	72
5	Age of first seizure	72
6	Seizure Duration	73
7	Prodrome, aura and automatism in Cases	74
8	Ictal semiology	75
9	Antiepileptic Medication	77
10	Psychometric testing: IQ, VSWM, MMSE.	79
11	Background activity of the long- term EEG	79
12	Long Term EEG findings	80
13	Serum levels of different biomarkers between cases and controls	82
14	Correlation between Gender and biomarkers	85
15	Correlation between the age of first fit, and duration of fits and serum levels	86
16	Side of MTS and Biomarkers	87
17	Correlation between seizure severity and Psychometric scales	87
18	Correlation between seizure severity and biomarkers	90
19	Correlation between bio-markers and psychometric tests	91
20	Correlation between age of first fit and duration of fits with cognition	93

LIST OF FIGURES

No.	Title	Page
1	A transverse section through the body of the hippocampus and dentate gyrus, choroid fissure, and inferior horn of the lateral ventricle	8
2	Tri synaptic organization of the hippocampus	8
3	Hippocampal sclerosis.	10
4	Pathophysiological cascade of inflammatory events in epilepsy	21
5	MMP9 Gene in genomic location	37
6	S100 b genomic location	45
7	Age in cases and controls	69
8	Sex distribution among cases and controls	70
9	Aura in Cases	74
10	Ictal semiology in Cases	76
11	AED	78
12	Long Term EEG findings	80
13	Side of MTS	81
14	CRP between Cases and Controls	83
15	S100 b levels between Cases and Controls	83
16	Serum levels of MMP9 between Cases and Controls	84
17	Prolactin levels between Cases and Controls	84
18	S100 b gender difference	85
19	Correlation between seizure severity and IQ	88
20	Correlation between seizure severity and MMSE	88
21	Correlation between seizure severity and VSMN	89
22	MMP9 and seizure severity	90
23	Correlation between MMP9 and IQ	92
24	Correlation between MMP9 and MMSE	92
25	Correlation between MMP9 and VSMN	93
26	Three generation Pedigree of case 1	94
27	MRI of case 1: bilateral hippocampal sclerosis	95
28	Long term EEG of case 1 : Bil frontotemporal spikes	95
29	Three generation Pedigree of case 2	96
30	MRI of case 2: Rt MTS	97
31	Long Term EEG of case 2 : Lft epileptiform discharges	97

ABBREVIATIONS

ACTH Adrenocorticotrophic hormone

AED Antiepileptic drug

AEDs Antiepileptic Drugs

BBB Blood Brain Barrier

BDNF Brain-derived neurotrophic factor

bMTLE Benign mesial temporal lobe epilepsy

CA Cornu Ammonis

CNS Central Nervous System

CRP C-reactive Protein

CSD Cortical spreading depression

DG Dentate Gyrus

DTI Diffusion tensor imaging

EC Entorhinal cortex

ECM Extracellular Matrix

EEG Electoencephalogram

FCD Focal cortical dysplasia

FMTLE Familial mesial temporal lobe epilepsy

FS Febrile Seizures

HS Hippocampal Sclerosis

ILAE International League Against Epilepsy

IPI Initial Precipetating Incident

IVIG Intravenous immunoglobulin

LTP Long-term potentiation

MF Mossy Fibers

MMP9 Matrix Metalloproteinase 9

MRI Magnetic Resonance Imaging

MRS Proton magnetic resonance spectroscopy

MTLE Mesial Temporal Lobe Epilepsy

MTLE-HS | Mesial Temporal Lobe Epilepsy with Hippocampal Sclerosis

PTZ Pentylenetetrazole

RAGE Receptor for Advanced Glycation End products

S100b S100 calcium binding protein B

SE Status Epilepticus

TBI Traumatic Brain Injury

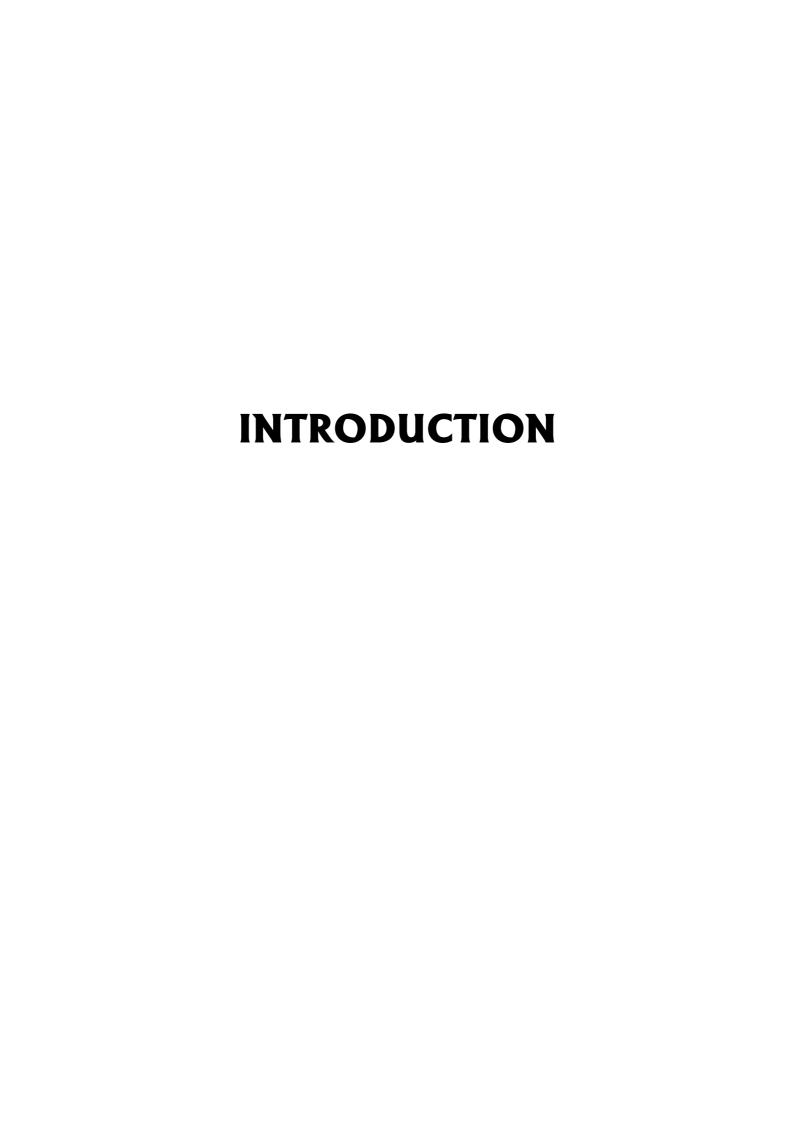
TIMPs Tissue inhibitors of metalloproteinases

TIRDA Temporal intermittent rhythmic delta activity

TLE Temporal Lobe Epilepsy

VBM Voxel-based morphometry

ABSTRACT


Mesial temporal lobe epilepsy associated with hippocampal sclerosis is the most common form of partial epilepsy. The aim of this work is to find a suitable biomarker that can help with the diagnosis and prognosis of this intractable form of epilepsy. To achieve this aim, 30 patients with complex partial seizures and 30 controls with ages from 4-30 years were subjected to a laboratory analysis including: S100B protein, Metalloproteinase 9. C-Reactive protein, prolactin, together with neurophysiological, radiological and psychometric assessments.

Results: A significant elevation was found in all the biomarkers between the cases and the controls. The performance of the epileptic patients in psychometric assessments were below average. MRI showed typical findings of MTS, EEG showed anterior temporal spikes. A significant negative correlation was found between MMP9 and psychometric test. Another significant negative correlation between seizure severity and biomarkers was found.

Conclusion: Serum biomarkers for neuronal injury are elevated with mesial temporal lobe epilepsy. Cognitive deficits are associated with mesial temporal lobe epilepsy.

KEYWORDS:

Mesial temporal lobe epilepsy, Hippocampal sclerosis, S100B, MMP9, CRP, Prolactin, psychometric assessments

INTRODUCTION

Epilepsy has been recognized since antiquity. It is one of the most common serious neurological conditions, affecting 0.4%–1.0% of the world population (**Treiman, 2010**).

Temporal lobe epilepsy (TLE) is the most common type of focal epilepsy syndromes in adults, representing approximately 60% of all partial epilepsies (Téllez-Zenteno and Hernández-Ronquillo, 2012).

Mesial Temporal Lobe Epilepsy with Hippocampal Sclerosis (MTLE-HS) is the most common form of focal epilepsy with a distinct clinical presentation called "limbic seizure" resulting from epileptic activity within the limbic structures. MTLE-HS syndrome is restricted to patients in whom hippocampal atrophy and/or abnormal signal intensity on Magnetic Resonance Imaging (MRI), and additional evidence of temporal dysfunction on functional images and neuropsychological assessment are demonstrated. MTLE usually presents between 6–10 years of age but can present from infancy to the 30s and affects 10 to 20% of children undergoing surgical treatment of TLE in the second half of the first decade of life (Engel *et al.*, 2012).

The association between Hippocampal Sclerosis (HS) and epilepsy has been known for almost two centuries. Mesial Temporal Sclerosis (MTS) is a progressive disorder and seizures initially controlled with antiepileptic drugs can later become intractable in 60–90%. Although surgery is a proven therapy, only 50% of cases have sustained postoperative seizure freedom and surgery can have important adverse consequences (**O'Dell** *et al.*, **2012**).

Cases with intractable seizures due to unilateral MTLE are excellent candidates for surgical treatment and resective surgery achieves a short-term cure in up to 85% of cases and long-term cure in 57-66% of cases.

Unfortunately, up to 30% of temporal lobe epilepsy cases are unsuitable for surgery due to the bilateral nature of the disease or concerns for the risk of memory deficit, severe amnesia following the removal of the amygdalohippocampal complex and visual field defects, as well as cognitive impairment (Min et al., 2013).

The discovery of damage extending beyond the hippocampus in cases with MTLE also highlighted that regional brain damage in MTLE is more likely to involve structures within the limbic system, particularly regions that are anatomically and functionally related to the hippocampus. This observation led to the hypothesis that MTLE is a disease affecting not only the hippocampus but also involving a network of interrelated structures, such as the entorhinal and perirhinal cortices, thalamus, anterior cingulate and cortical association areas (Bocti et al., 2003).

AIM OF THE WORK