

Ain Shams University Faculty of Engineering Computer and Systems Engineering Department

Cross-language Record Linkage for Big Data

A Thesis submitted in partial fulfillment of the requirements of the degree of Master of Science in Electrical Engineering

Submitted by **Doaa Medhat Mohamed El-Saeed El-Mandouh**

B.Sc. of Electrical Engineering (Computer and Systems Engineering Department) Ain Shams University, 2009

Supervised by

Dr. Ahmed Hassan Mohamed

Dr. Cherif Ramzi Salama

Cairo, 2016

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING Computer and Systems Engineering

Cross-language Record Linkage for Big Data

by

Doaa Medhat Mohamed El-Saeed El-Mandouh

Bachelor of Science in Electrical Engineering (Computer and Systems Engineering) Faculty of Engineering, Ain Shams University, 2009

EXAMINERS' COMMITTEE

Name and Affiliation	Signature
Prof. Mohamed Gamal El-Din Darwish	
Faculty of Computer Science, Cairo University.	
Prof. Hoda Korashi Mohamed Ismail	
Computer and Systems Engineering Department	
Faculty of Engineering, Ain Shams University.	
Assoc. Prof. Ahmed Hassan Mohamed Yousef	
Computer and Systems Engineering Department	
Faculty of Engineering Ain Shams University	

Date: / / 2016

Statement

This dissertation is submitted to Ain Shams University for the degree of

Master of Science in Electrical Engineering (Computer and Systems Engineering).

The work included in this thesis was carried out by the author at the Computer and Systems Engineering Department, Faculty of Engineering, Ain Shams University, Cairo, Egypt.

No part of this thesis was submitted for a degree or a qualification at any other university or institution.

Name: Doaa Medhat Mohamed El-Saeed El-Mandouh

Date: / / 2016

Researcher Data

Name: Doaa Medhat Mohamed El-Saeed El-Mandouh

Date of Birth: 23th of June 1986

Place of Birth: Cairo, Egypt

First University Degree: B.Sc. in Electrical Engineering

Name of University: Ain Shams University

Date of Degree: 2009

Cross-language Record Linkage for Big Data

Doaa Medhat Mohamed El-Saeed El-Mandouh

Masters of Science Dissertation Computer and Systems Engineering Department Faculty of Engineering - Ain Shams University

ABSTRACT

This thesis demonstrates the dire need for a powerful record linkage process to efficiently correlate data from different sources. It starts with an introduction about record linkage process with a survey on different techniques introduced in this area. It illustrates how the problem grows to be more complex when the goal is to manipulate big data. Subsequently, it presented the effectiveness and efficiency aspects. The former is needed for achieving high quality of matching records from different languages while the latter is needed for achieving a scalable load balanced record linkage process over large-scale multilingual data sources.

Afterword, the thesis introduces a novel technique relying on exiting pattern-based and phonetic matching techniques, which supports the matching of names written in different writing scripts effectively. Consequently, the thesis introduces a new cost-aware load balancing technique for achieving a better load balancing while matching large-scale multilingual data sources, which takes into consideration the different costs for matching cross-language records and mono-language ones. Finally, it applies the proposed techniques on some case studies, where they showed more effective and efficient results against existing techniques.

Key words: Record Linkage, Entity Matching, Cross Language, Multilingual, Big data, MapReduce.

Faculty of Engineering – Ain Shams University Computer and Systems Engineering Department

Thesis title: "Cross-language Record Linkage for Big Data"

Submitted by: Doaa Medhat Mohamed El-Saeed El-Mandouh

Degree: Master of Science in Electrical Engineering

Thesis Summary

This dissertation demonstrates the importance of Cross-language Record Linkage for Big Data. The dissertation is organized in eight chapters as follows:

Chapter 1

This chapter provides an overview about cross-language record linkage for Big Data. Motivation, objective and contributions of this work are presented. Also, the organization of the thesis is highlighted.

Chapter 2

This chapter illustrates a background about the record linkage process taking into account its different phases and the used techniques in each phase. In addition, it illustrates big data and distributed processing of large tasks that are required to scale up the record linkage process.

Chapter 3

This chapter discusses the state-of-art related work for cross-language matching, adaptation of the record linkage process to handle big data, and the existing approaches to load balance this process in the presence of workload imbalance

Chapter 4

This chapter introduces an overview about the proposed cross language record linkage process and the required adaptations to scale this process to work on Big Data.

Chapter 5

In this chapter, a generalized cross-language name matching framework is introduced which is used for matching names from different languages.

Chapter 6

In this chapter, an enhanced blocking-based record linkage process for Big Data is presented using a proposed cost-aware load balancing technique, which takes in consideration the different costs for matching mono-language and cross-language records in multilingual data sources.

Chapter 7

This chapter illustrates the different executed experiments and their results to evaluate the efficiency and effectiveness of the proposed solution. The experiments are performed on real data that is distributed on a cluster of multiple machines in a cloud environment.

Chapter 8

This chapter concludes the work presented in this thesis, and highlights the proposed future work.

ACKNOWLEDGMENT

All gratitude to ALLAH

I would like first to thank my supervisors Dr. Ahmed Hassan and Dr. Cherif Salama for their insightful thoughts, continuous guidance, encouragement, help, and patience.

Many thanks to my colleagues and friends for their support and help during the work on this thesis.

Last but not least, I would like to thank all my family, especially my parents and sisters for supporting me through my whole life. Their encouragement, care, and love are what guided me to accomplish this work.

Contents

Li	st of I	Figures	`	VIII V
Li	st of T	Fables		X
Li	st of A	Abbrevia	ations	XI
1	Intr	oduction	1	1
	1.1	Motiva	tion	1
	1.2		and Contributions	2
	1.3		Organization	3
2	Bacl	kground		5
	2.1	Record	Linkage Process	5
		2.1.1	Data Pre-Processing Phase	7
		2.1.2		8
		2.1.3	Record-pair Comparison Phase	10
			2.1.3.1 Phonetic Matching Techniques	11
			2.1.3.2 Pattern Matching Techniques	12
			2.1.3.3 Dictionary-Based Matching Techniques	
				14
		2.1.4	Classification Phase	15
		2.1.5	Evaluation Measures	15
	2.2	Record	Linkage for Big Data	17
		2.2.1	Big Data processing using MapReduce	17
		2.2.2	Blocking-based Record Linkage using MapReduce	20
3	Rela	ited Woi	rk	22
	3.1	Cross-l	anguage matching	22

CONTENTS

	3.2	Record 3.2.1	d linkage for Big Data	25
		3.2.1	Load balancing approaches for MapReduce based Record Linkage	26
			3.2.1.1 Detailed elaboration of BlockSplit and	20
			Multi-Source BlockSlicer Techniques .	30
			Muiti-Source Blocksficer recliniques.	30
4			of proposed Cross Language Record Linkage for	
		Data So		35
	4.1	Propos	sed Solution Overview	35
		4.1.1	Cross Language Matching	35
		4.1.2	Multilingual Record Linkage for Big Data	36
5	Proj	posed C	cross Language Matching Solution	38
	5.1	Introd	uction	38
	5.2		age Identification	40
	5.3	Norma	alization	40
		5.3.1	General Normalization	40
		5.3.2	Language-Specific Normalization	41
			5.3.2.1 Arabic Characters Normalization	41
			5.3.2.2 Latin Characters Normalization	41
	5.4	Parsin	g	43
	5.5	Pair-w	rise comparison	48
		5.5.1	Phonetic Encoding	48
		5.5.2		50
		5.5.3		58
	5.6	Classi	fication	59
	5.7	Summ	ary	59
6	Pro	posed M	Iultilingual Record Linkage for Big Data Solution	60
	6.1	Introd	uction	60
	6.2		sis MapReduce Job	63
		6.2.1		65
		6.2.2	Reduce Phase (Count Occurrences)	68
	6.3	Match	ing MapReduce Job	71
		6.3.1	Proposed Cost-Aware Load Balancing Mechanism	71
			6.3.1.1 Load Balancing Initialization	72

CONTENTS

			6.3.1.2	Proposed Cost-Aware Block Splitting	
				Mechanism	73
			6.3.1.3	Load Balancing of match tasks	80
		6.3.2	Map Pha	ase (Proposed Cost-Aware Load Balancing)	83
			6.3.2.1	Setup Execution	83
			6.3.2.2	Map Execution	84
		6.3.3	Reduce	Phase (Proposed Multilingual Similarity	
			Calculat	ions)	86
	6.4	Evalua	ation Mapl	Reduce Job	87
		6.4.1	Map Pha	ase (Source Tagging)	89
		6.4.2	Reduce 1	Phase (Measure Calculations)	89
	6.5	Summ	ary		90
7	Exp	eriment	tal Results	s and Discussion	91
	7.1	Enviro	nment Set	tup	91
		7.1.1		paration	91
		7.1.2	Distribut	ted environment setup	93
	7.2	Experi			94
		7.2.1	Experim	ents for Effectiveness Measurement	94
			7.2.1.1	Phonetic and Pattern Based Matching	
				Comparison	94
			7.2.1.2	Hybrid Matching Technique: Compo-	
				nents Analysis	97
			7.2.1.3	Summary	99
		7.2.2	Experim	ents for Efficiency Measurement	100
			7.2.2.1	Robustness to Data Skew	101
			7.2.2.2	Capability of load balancing Multilin-	
				gual data sources	107
			7.2.2.3	Scalability to number of nodes	111
			7.2.2.4	Scalability to size of data	114
			7.2.2.5	Summary	117
8	Con	clusion	and Futu	re Work	118
	8.1	Conclu	usion		118
	8.2	Future	Work		119

CONTENTS

Publications	120
References	121
Appendix	126

List of Figures

2.1	General Record Linkage Process	7
2.2	Standard Blocking Example	10
2.3	Levenshtein Distance Example	14
2.4	MapReduce Process Illustration	18
2.5	Blocking-based Record Linkage using MapReduce	21
3.1	MapReduce-based linkage with load balancing [29]	27
3.2	BlockSplit extension splitting example	31
3.3	Multi-Source BlockSlicer splitting example	32
3.4	Final workload distribution example	33
5.1	Cross-Language Matching Solution Architecture	39
5.2	Parsing compound name with different forms	44
5.3	Parse tree for full name with alternative name	45
5.4	Parse tree for full name with different constituents	47
5.5	ArabicSoundex and Soundex Examples	48
5.6	Proposed Extended ArabicSoundex and Soundex Examples	49
5.7	Proposed Algorithm for CLLD	53
5.8	Example of Proposed CLLD	54
6.1	Proposed Record Linkage Process Architecture	61
6.2	Proposed Analysis MapReduce Job	64
6.3	Match Task generation for small block	73
6.4	Proposed Algorithm for Cost-Aware Block Splitting	76
6.5	Proposed Cost-Aware Block Splitting Mechanism	77
6.6	Proposed Cost-Aware Block Splitting Mechanism - Match	
	Tasks	78
6.7	Greedy Optimization for Load Balancing the match tasks	81

LIST OF FIGURES

6.8	Matching MapReduce Job	82
6.9	Evaluation MapReduce Job	87
6.10	Evaluation MapReduce Job Data flow	88
7.1	Sample of generated JSON objects	92
7.2	Quality measures for proposed hybrid techniques	97
7.3	Execution time for the proposed hybrid techniques	98
7.4	Example of blocks distribution for different data skew	102
7.5	Robustness to Data Skew Experiment Results	105
7.6	Capability of load balancing Multilingual data sources	
	Experiment Results	109
7.7	Scalability to number of nodes Experiment Results	112
7.8	Scalability to size of data Experiment Results	115