FORMS AND DISTRIBUTION OF SOME NUTRIENTS IN SOILS UNDER ORGANIC FARMING CONDITION

By

MOHAMMED ABDULRAHIM DAWOOD OMAR

B.Sc. Agric. Sci. (Soil & Water), Fac. Agric., Jordan Univ., (1996) M.Sc. Agric. Sci. (Agric. Res. & Env.), Fac. Agric., Jordan Univ., (2000)

THESIS

Submitted in Partial Fulfillment of the Requirements for the Degree of

DOCTOR OF PHILOSOPHY

In

Agricultural Sciences (Soil Science)

Department of Soil Science Faculty of Agriculture Cairo University EGYPT

2010

APPROVAL SHEET

FORMS AND DISTRIBUTION OF SOME NUTRIENTS IN SOILS UNDER ORGANIC FARMING CONDITION

Ph.D. Thesis
In
Agric. Sci. (Soil Science)

By

MOHAMMED ABDULRAHIM DAWOOD OMAR

B.Sc. Agric. Sci. (Soil & Water), Fac. Agric., Jordan Univ., (1996) M.Sc. Agric. Sci. (Agric. Res. & Env.), Fac. Agric., Jordan Univ., (2000)

Approval Committee

Dr. MOHAMMED AHMED MOSTAFA	
Professor of Soil Sciences, Fac. Agric., Ain Shams University	
Dr. SHAFIK IBRAHIM ABDEL AAL	
Professor of Soil Sciences, Fac. Agric., Cairo University	
Dr. REDA RAGAB SHAHIN	
Professor of Soil Sciences, Fac. Agric., Cairo University	
Dr. HASSAN AHMED KHATER	
Associate Professor of Soil Sciences, Fac. Agric., Cairo University	

Date: 24 /2 /2010

SUPERVISION SHEET

FORMS AND DISTRIBUTION OF SOME NUTRIENTS IN SOILS UNDER ORGANIC FARMING CONDITION

Ph.D. Thesis
In
Agric. Sci. (Soil Science)

By

MOHAMMED ABDULRAHIM DAWOOD OMAR

B.Sc. Agric. Sci. (Soil & Water), Fac. Agric., Jordan Univ., (1996) M.Sc. Agric. Sci. (Agric. Res. & Env.), Fac. Agric., Jordan Univ., (2000)

SUPERVISION COMMITTEE

Dr. REDA RAGAB SHAHIN
Professor of Soil Science, Fac. Agric., Cairo University

Dr. HASSAN A. KHATER
Associate Professor of Soil Science, Fac. Agric., Cairo University

Name of Candidate: Mohammed A. D. Omar Degree: Ph.D.

Title of Thesis: Forms and Distribution of Some Nutrients in Soils Under

Organic Farming Condition.

Supervisors: Dr. Reda. R. Shahin,

Dr. Hassan A. Khater,

Department: Soil Science.

Branch: Approval: 24/2/2010

ABSTRACT

Last two decades showed a high conversion to organic farming in Egypt. In this study we investigated the effect of long term organic agriculture on some soil chemical properties. Different sources of OM (Sicum compost (SEC), Faium compost (FAC), animal manure compost (AMC), crop manure compost (CMC), and town refuse compost (TRC)) were incubated under different soil types (alluvial, calcareous, and sandy soils) to investigate their effect on soil KCl-NH⁺₄, KCl-NO⁻₃, Olsen-P, dissolved organic matter, pH, EC, and DTPA-(Na⁺, Ca++, Mg++, Fe, Cu, Mn, and Zn). The laboratory incubation of the amended soils was accomplished by two methods, batch method (lasting for one year) and column method (lasting for 4 months).

High concentration of most nutrient was observed at the beginning of the incubation, following with decreasing until end of the first month. After that concentrations showed an increasing manner up to the end of the incubation.

The concentration of entire nutrients was higher under column method, at the same time. Column incubation allowed higher release of nutrient from organic compost comparing with batch method, due to the removing of decomposition products which enhance more decomposition.

Two organic farms, with different soil type, were used to clarify their effect on total organic matter (TOM), ammonium, nitrate, cation exchange capacity (CEC), and the behavior of phosphorus. Sicum farm (as loamy sand soil) with 0, 12, 15, 18, and 23 yrs under organic farming, and Faium farm (sandy clay loam soil) with sectors, 2, 4, 8, and 10 yrs under organic farming, were chosen.

Results showed increases in TOM, NH⁺₄, ON⁻₃, and CEC with time under Sicum farm, with high correlation. Same results were obtained for Faium farm, but with lower correlation.

P-adsorption isotherm was studied using two different methods, namely the standard batch method and a new flow method. Amount of phosphorus adsorbed, at equilibrium, and Freundlich partition coefficients (K_d) were higher for soils with lower organic matter, for both farms and both methods.

Key words: Organic farming, column, batch, incubation, composts

DEDICATION

I dedicate this work to whom my heartfelt thanks; to my brothers Belal and Omar for their patience and support, as well as to my parents and brothers for all the help they lovely offered along the period of my post graduation.

ACKNOWLEDGEMENT

At the first, the author thanks **Allah** who made him able to supplement this work.

Then, I would like to express $m\gamma$ acknowledgement and deepest appreciation to Dr. Reda R. Shahin, Professor of Soil Chemistry, Faculty of Agriculture, Cairo University, for his supervision, suggesting the problem, valuable scientific assistance, encouragement, continuous guidance and constructive criticism which made the completion of this work possible. Also, my sincere thanks are to Dr. Hassan A. Khater, Associate Professor of Soil Chemistry, Faculty of Agriculture, Cairo University, for supervision, continuous guidance his sincere constructive criticism. The author will never forget the efforts and encouragement of everyone who have helped him in the performance of this work.

Grateful appreciation is also extended to all staff members of Soil Department, Faculty of Agriculture, Cairo University.

Also I feel deeply grateful to my dear country Jordan.

CONTENTS

INTRODUCTION	
REVIEW OF LITERATURE	
1. Organic farming	
2. Composting of organic wastes	
a. Composting	
b. Incubation of organic compost and nutrients release	
1. Nitrogen	
2. Phosphorus	
3. Calcium, potassium and sodium	
4. Micronutrients	
c. Formation of soil organic matter	
d. Fractionation of soil organic matter	
1. Chemical fractionation of humified organic ma	
humified organic matter	
2. Physical fractionation of soil organic matter	
3. Soil properties and organic farming	
a. Soil fertility	
b. pH	
c. Cation exchange capacity	
d. Nitrogen forms	
e. Phosphorus adsorption	
MATERIALS AND METHODS	
1. Compost incubation experiments and nutrient release	
a. Batch incubation method	
b. Column incubation method	
2. Organic farms	
a. Sicum farm.	
b. Faium farm	
3. Forms and distribution of biosolids and nitrogen	
a. Dry sieve separates	
4. Chemical fraction of humified organic matter	
5. Cation exchange capacity	
6. Phosphorus adsorption isotherm	
a. Batch method	
h. Flow Method	

. Incubation experiments and the release of some n from selected composts	
a. Batch incubation experiment	
1. pH	
2. Dissolved organic matter (DOM)	
3. Available ammonium	
4. Available nitrate	
5. Available phosphorus	
6. Electrical conductivity	
7. Available cations	
8. Soluble anions	
9. Available micronutrients	
b. Column incubation experiment	
1. pH	
2. Dissolved organic matter (DOM)	
3. Available ammonium.	
4. Available nitrate	
5. Transport parameters of NO ₃ and NH ₄ ions in	column
incubation experiment using BTC	
6. First order Kinetics of NH ₄ ⁺ and NO ₃ ⁻ release	ed in the
batch and column incubation experiments	
7. Available phosphorus	
8. Electrical conductivity	
9. Available cations	
10. Soluble anions	
11. Available micronutrients	
c. Comparison between the batch and Column incuba	tion
experiments	
1. pH	
2. Dissolved organic matter (DOM)	
3. Available ammonium	
4. Available nitrate	
5. Available phosphorus	
6. Electrical conductivity	
7. Available cations	

8. Soluble anions
9. Available micronutrients
2. Spatial OM distribution in Sicum organic farm and it
impact on soil properties
3. Effect of organic farming period on the distribution and
characteristics of soil organic matter
a. Distribution of soil organic matter as affected by organic farming periods.
b . Infrared (IR) investigation of humus fractions in Sicun and Faium organic farms as affected by organic farming periods.
1. IR-characteristics of fulvic acid separate
2. IR-characteristics of humic acid separate
4. Effect of organic farming period on the properties o
dry-sieve separates in Sicum and Faium organic
farms
a. Distribution of dry sieve separates in organic farms a affected by cultivation periods
b. Distribution of OM in dry sieve separates with time
c. Distribution of nitrogen forms in dry sieve separates with time
1. Ammonium distribution in dry-sieve separates
2. Nitrate distribution in dry-sieve separates
5. Effect of organic farming periods on CEC of Sicun
and Faium soils
6. P-adsorption isotherm of soils as affected by organic
farming
a. P-adsorption isotherm using batch technique
b. P-adsorption isotherm using flow technique
UMMARY
EFERENCES
PENDIX A
PENDIX B
PENDIX C
PENDIX D
RARIC SUMMARY

LIST OF TABLES

No.	Title	Page
1.	Partial composition of mature plant tissue and soil organic matter	16
2.	Soil organic matter and decomposition rates under optimum conditions for a native grassland soil	20
3.	Weight of soil, compost, and the pore volume for all type of soils used for incubation.	43
4.	Composts analysis at the beginning of incubation	54
5.	Maximum allowed concentration (mg/kg), of heavy metals in compost defined by the EU regulations (EEC 2092/91 and EC 834107 and other regulations	55
6.	Soil analysis at the beginning of incubation.	56
7.	Correlation (R ²) of the relationship between the extractable ammonium concentration and pH, in the batch experiment, through the period from 56 th up to the end of the incubation period	65
8.	Breakthrough (BTC) transport parameters of NO ₃ and NH ₄ ions in the investigated soils and composts	109
9.	Kinetic rate constants of the 1 st order biodegradation reaction of the investigated composts and soils	116
10.	Soil properties (OM, NO ₃ -, NH ₄ ⁺ and CEC) underneath and between olive trees in Sicum organic farm	157
11.	Total organic matter changes in surface and subsurface with different periods of organic farming in winter and summer seasons in Sicum farm.	160
12.	Total organic matter changes in surface and subsurface with different periods of organic farming in winter and summer seasons in Faium farm	161

No.	Title	Page
13.	Corrected relative transmission (T%) for the main IR bands of fulvic acid separates from Sicum and Faium organic farms	165
14.	Corrected relative transmission (T%) for the main IR bands of humic acid separates from Sicum and Faium organic farms	169
15.	Development of some soil properties under long term Sicum organic farming	171
16.	Effect of long term organic farming on the soil cation exchange capacity with and without the presence of OM for Sicum farm	189
17.	Effect of long term organic farming on the soil cation exchange capacity with and without the presence of OM for Faium farm	191
18.	Freundlich constants for batch and flow methods under Sicum and Faium farms	196

LIST OF FIGURES

No.	Title	Page
1.	Carbon cycle (Bot and Benites, 2005)	17
2.	Schematic diagram of column method apparatus	43
3.	Satellite picture by Google earth for Sicum farm	45
4.	Flow chart of soil humified organic matter fractionation	48
5.	Flow chart of samples pretreatment before CEC determination.	49
6.	Schematic diagram of flow method apparatus	51
7.	Soil pH at different periods of batch incubation in (a) alluvial, (b) calcareous and (c) sandy soils	58
8.	Concentration of DOM at different periods of batch incubation in (a) alluvial, (b) calcareous and (c) sandy soils	61
9.	Concentration of available ammonium at different periods of batch incubation in (a) alluvial, (b) calcareous and (c) sandy soils	63
10.	Concentration of available nitrate at different periods of batch incubation in (a) alluvial, (b) calcareous and (c) sandy soils	66
11.	Concentration of available phosphorous at different periods of batch incubation in (a) alluvial, (b) calcareous and (c) sandy soils.	69
12.	Soil EC at different periods of batch incubation in (a) alluvial, (b) calcareous and (c) sandy soils	73
13.	Concentration of sodium at different periods of batch incubation in (a) alluvial, (b) calcareous and (c) sandy soils.	74
14.	Concentration of potassium at different periods of batch incubation in (a) alluvial, (b) calcareous and (c) sandy soils	76

No.	Title	Page
15.	Concentration of calcium at different periods of batch incubation in (a) alluvial, (b) calcareous and (c) sandy soils	77
16.	Concentration of sulfate at different periods of batch incubation under (a) alluvial, (b) calcareous and (c) sandy soils	79
17.	Concentration of bicarbonate at different periods of batch incubation in (a) alluvial, (b) calcareous and (c) sandy soils	80
18.	Concentration of iron at different periods of batch incubation in (a) alluvial, (b) calcareous and (c) sandy soils	81
19.	Concentration of manganese at different periods of batch incubation in (a) alluvial, (b) calcareous and (c) sandy soils.	82
20.	Concentration of zinc at different periods of batch incubation in (a) alluvial, (b) calcareous and (c) sandy soils	83
21.	Concentration of copper at different periods of batch incubation in (a) alluvial, (b) calcareous and (c) sandy soils	84
22.	pH of the extract at different periods of column incubation in (a) alluvial, (b) calcareous and (c) sandy soils	88
23.	Distribution of soil pH through soil column after 8 and 16 weeks under column incubation in (a) alluvial, (b) calcareous and (c) sandy soils	90
24.	Distribution of DOM through soil column after 8 and 16 weeks under column incubation in (a) alluvial, (b) calcareous and (c) sandy soils	92
25.	Concentration of extracted ammonium at different periods of column incubation in (a) alluvial, (b) calcareous and (c) sandy soils.	94

No.	Title	Page
26.	Accumulative concentration of extracted ammonium at different periods of column incubation in (a) alluvial, (b) calcareous and (c) sandy soils	96
27.	Distribution of ammonium through soil column after 8 and 16 weeks under column incubation in (a) alluvial, (b) calcareous and (c) sandy soils	98
28.	Concentration of extracted nitrate at different periods of column incubation in (a) alluvial, (b) calcareous and (c) sandy soils.	100
29.	Accumulative concentration of extracted nitrate at different periods of column incubation in (a) alluvial, (b) calcareous and (c) sandy soils	102
30.	Distribution of nitrate through soil column after 8 and 16 weeks under column incubation in (a) alluvial, (b) calcareous and (c) sandy soils	104
31.	Calculating of R and S from the breakthrough curve (BTC)	105
32.	The relationship between the pore volume and the leached fraction (C_n/C_T) of NH_4 from column incubation experiment of the investigated composts under (a) alluvial, (b) calcareous and (c) sandy soils.	107
33.	The relationship between the pore volume and the leached fraction (C_n/C_T) of NO_3 from column incubation experiment of the investigated composts under (a) alluvial, (b) calcareous and (c) sandy soils.	108
34.	The 1 st order model of the release curves of NH ₄ from batch incubation experiment of the investigated composts under (a) alluvial, (b) calcareous and (c) sandy soils	112
35.	The 1 st order model of the release curves of NH ₄ from column incubation experiment of the investigated composts under (a) alluvial, (b) calcareous and (c) sandy soils	113

No.	Title	Page
36.	The 1 st order model of the release curves of NO ₃ from batch incubation experiment of the investigated composts under (a) alluvial, (b) calcareous and (c) sandy soils	114
37.	The 1 st order model of the release curves of NO ₃ from column incubation experiment of the investigated composts under (a) alluvial, (b) calcareous and (c) sandy soils	115
38.	Concentration of extracted phosphorus at different periods of column incubation in (a) alluvial, (b) calcareous and (c) sandy soils.	118
39.	Accumulative concentration of extracted phosphorus at different periods of column incubation in (a) alluvial, (b) calcareous and (c) sandy soils	120
40.	Distribution of phosphorus through soil column after 8 and 16 weeks under column incubation in (a) alluvial, (b) calcareous and (c) sandy soils	121
41.	EC of the extract at different periods of column incubation in (a) alluvial, (b) calcareous and (c) sandy soils	123
42.	Distribution of soil EC through soil column after 8 and 16 weeks under column incubation in (a) alluvial, (b) calcareous and (c) sandy soils	124
43.	Accumulative concentration of extracted sodium at different periods of column incubation in (a) alluvial, (b) calcareous and (c) sandy soils.	126
44.	Accumulative concentration of extracted potassium at different periods of column incubation in (a) alluvial, (b) calcareous and (c) sandy soils	127
45.	Distribution of sodium through soil column after 8 and 16 weeks under column incubation in (a) alluvial, (b) calcareous and (c) sandy soils	128