

شبكة المعلومات الجامعية

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

شبكة المعلومات الجامعية

جامعة عين شمس

التوثيق الالكتروني والميكروفيلم

قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأفلام قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأفلام بعيدا عن الغبار في درجة حرارة من ١٥-٥٠ مئوية ورطوبة نسبية من ٢٠-٠٠% To be Kept away from Dust in Dry Cool place of 15-25- c and relative humidity 20-40%

بعض الوثائـــق الإصليــة تالفــة

بالرسالة صفحات لم ترد بالإصل

FORMULATION AND EVALUATION OF NADOLOL AS ANTIGLAUCOMA DRUG FOR TOPICAL APPLICATION

A THESIS

Presented By

Amal El-Sayeh Fadle Abou El-Ela

B. Pharm. Sci. (1991)

Submitted for the Partial Fulfillment for the degree of
Master in pharmaceutical sciences
(Pharmaceutics)

Under the Supervision of

Prof.Dr. Fawzia S. Habib

Prof. of Pharmaceutics
Faculty of Pharmacy, Assiut University

Prof.Dr. Ahmed M. El-Sayed

Prof. of Pharmaceutics
Faculty of Pharmacy,
Assiut University

Dr. Ehab A. Fouad

Lecturer of Pharmaceutics
Faculty of Pharmacy,
Assiut University

Department of Pharmaceutics
Faculty of Pharmacy
Assiut University

1998

"علم الإنسان بما في يعلم"

صدق الله العظيم

To My Parents My Husband My Sons Omar and Mohamed

APPROVAL SHEET

Approved by

Committee in charge

Date: / /1998

ACKNOWLEDGEMENT

ACKNOWLEDGEMENT

"In the name of ALLAH, most gracious, most merciful"

The language with all its abundant, plentiful words is helpless to provide me with the right words that may express my feelings to all those who have encouraged and helped me to finish this work.

I would like to express my deep gratitude and cordial thanks to my **Prof.Dr.** Fawzia S. Habib, Professor of Pharmaceutics, Faculty of Pharmacy, Assiut University, for suggestion of the subject, valuable supervision, fruitful guidance, constant advice, moral support and helpful criticisms throughout this work.

I wish to express my thanks to **Prof.Dr.** Ahmed M. El-Sayed, Professor of Pharmaceutics, Faculty of Pharmacy, Assiut University, for his kind supervision during his presence in the Dept. until his travel.

I am sincerely grateful to **Dr.** *Ehab A. Fouad*, Lecturer of Pharmaceutics, Faculty of Pharmacy, Assiut University, for his valuable supervision, continuous guidance, unlimited cooperation and his great encouragement in this work.

I would like to thank **Dr.** *Kawther Mohamed*, Lecturer of Histology, Faculty of Medicine, Assiut University, for her help during the histopathological study.

I would like to extend my heart-felt thanks to my family especially my husband for his endless help and cordial encouragement, also my sons Omar and Mohamed.

Finally, I would like to extend my thanks to who gave me their support and advice during this research.

CONTENTS

		Page
Abstract		i
Introduc	tion	1
Scope of	f work	40
Part I:	Phase diagram construction, formulation and physico-	
	chemical evaluation of microemulsion	43
1.	Experimental	43
1.1.	Materials	43
1.2.	Apparatus	44
1.3.	Microemulsion preparation	45
1.3.1.	Determination of phase diagram and rules relating	
	to triangular diagrams	45
1.3.2.	Methods for construction of pseudo-ternary phase	
	diagrams	53
1.3.2.1.	The phase diagrams of the microemulsion composed	
	of polysorbate 80 either glycerin, ethylene glycol or	
	propylene glycol, isopropyl myristate or liquid paraffin	
	and water	53
1.3.2.1.1	. Results and discussion.	65
1.3.2.1.2	. Influence of the cosurfactant and surfactant:	
	cosurfactant mass ratio (K _m)	65
1.3.2.1.3.	Influence of the oil	68
1.3.2.2.	The phase diagrams of the microemulsion composed of	
	polysorbate 80, sorbitol, , isopropyl myristate and water	69
1.3.2.2.1.	Results and discussion	.71
1.3.2.3.	The phase diagrams of the microemulsion composed of	
	soya lecithin, propylene glycol, either sesame oil,	
	isopropyl myristate or liquid paraffin and water	.72
.3.2.3.1.	Results and discussion.	. 77

		Page
1.3.3.	Methodology	.78
1.3.3.1.	Preparation of microemulsion	.78
1.4.	Evaluation of physicochemical properties of	
	microemulsions	. 81
1.4.1.	Particle size analysis of microemulsion systems.	. 86
1.4.2.	Drug content	. 87
1.4.2.1.	Construction of calibration curve	. 87
1.4.2.2.	Drug analysis	. 87
1.4.3.	Refractive index and conductivity measurements	. 88
1.4.4.	pH measurements	. 89
1.4.5.	Partition coefficient determination of nadolol	. 89
1.4.6.	Rheological properties of microemulsion preparations	.90
1.4.7.	Results and discussion.	.91
1.4.7.1.	Particle size analysis	.91
1.4.7.1.1.	Microscopical examination of microemulsions	.93
1.4.7.2.	Drug content	110
1.4.7.3.	Refractive index and conductivity	112
1.4.7.4.	pH values	114
1.4.7.5.	Partition coefficient	115
1.4.7.6.	Rheological properties	115
1.5.	Stability assessment of microemulsions	118
1.5.1.	Long-term stability tests	18
1.5.2.	Accelerated stability tests	19
1.5.3.	Methods	19
1.5.3.1.	Long-term studies	19
1.5.3.2.	Accelerated stability tests	20
1.5.3.2.1.	Centrifugal stress	20
1.5.3.2.2.	Freeze-thaw cycles	20
1.5.4.	Results and discussion.	20

		Page
Part II:	Determination of the in-vitro release of nadolol from	
	different ophthalmic microemulsions	122
2.	Determination of the in-vitro release of nadolol from	
	different ophthalmic microemulsions	122
2.1.	Results and discussion	122
2.1.1.	Kinetics of in-vitro release of nadolol from different	
	microemulsion systems.	122
2.2.	Partition coefficient and phase structure ratio	123
2.3.	Effect of surfactant: cosurfactant mass ratio (K _m) on	
	nadolol release from microemulsions	129
2.3.1.	Effect of surfactant: cosurfactant mass ratio on the	
	release of nadolol from o/w microemulsions based on	
	polysorbate 80, sorbitol and isopropyl myristate	129
2.3.2.	Effect of (K_m) on the release of nadolol from o/w	
	microemulsions based on polysorbate 80, propylene	
	glycol and isopropyl myristate	131
2.3.3.	Effect of (K _m) on the <i>in-vitro</i> release of nadolol from	
	o/w microemulsions based on polysorbate 80, glycerin	
	and isopropyl myristate	134
2.3.4.	Effect of (K _m) on the in-vitro release of nadolol from	
	o/w microemulsions based on polysorbate 80, glycerin	
	and liquid paraffin	136
2.3.5.	Effect of (K _m) on the <i>in-vitro</i> release of nadolol from	
	w/o microemulsions based on soya lecithin, propylene	
	glycol and sesame oil	138
2.4.	Effect of oil type on the in-vitro release of nadolol	
	from w/o microemulsions based on soya lecithin	
	and propylene glycol	140

		rag
2.5.	Effect of surfactant and microemulsion type on the	
	in-vitro release of nadolol from microemulsions based	
	on isopropyl myristate and propylene glycol	142
2.6.	Effect of cosurfactant type on the in-vitro release of nadol	ol
	from o/w microemulsions based on polysorbate 80 and	
	isopropyl myristate	145
2.7.	Mechanism of drug release	147
Part III:	In-vivo performance of ophthalmic microemulsions of	
	1% (w/w) nadolol in the rabbit's eye	158
3.	In-vivo performance of ophthalmic microemulsions of	
	1% (w/w) nadolol in the rabbit's eye	158
3.1.	Investigation of the in-vivo performance of ophthalmic	
	preparations of 1% (w/w) nadolol in the healthy eye	
	of rabbits	158
3.2.	Statistical analysis of the <i>in-vivo</i> data	.159
3.3.	Results and discussion.	.161
3.3.1.	Effect of vehicle type on the parameters of activity	
	of 1% (w/w) nadolol in the rabbit's eye	.161
3.3.2.	Effect of surfactant: cosurfactant mass ratio (K _m) on	
	the parameters of activity of 1% (w/w) nadolol in	
	o/w microemulsions in the rabbit's eye	. 167
3.3.3.	Effect of surfactant: cosurfactant mass ratio (K _m) on	
	the IOP of rabbit's eye post-instillation of 1% (w/w)	
	nadolol in w/o microemulsions based on soya lecithin,	
	propylene glycol and sesame oil	. 175
3.3.4.	Effect of oil type on the IOP of rabbit's eye post-	
	installation of 1% (w/w) nadolol in w/o microemul-	
	ions based on sova lecithin and propylene glycol	.181