USE OF VAGINAL SILDENAFIL IN PATIENTS UNDERGOING INTRACYTOPLASMIC SPERM INJECTION (ICSI) PROCEDURE

Thesis

Submitted for fulfillment of Master Degree in Obstetrics and Gynecology

By

Ehab Nabil Salama

M.B.B.Ch., Cairo University
Assisstant Researcher at the National Research Center

Supervised by

Prof. Dr. Soumaya Mohamed Hassan Abou Elew Professor of Obstetrics and Gynecology Kasr El Aini Faculty of Medicine, Cairo University

Assist. Trof. Dr. Osama Mahmoud Azmy
Assistant Professor of Obstetrics and Gynecology
National Research Center

Assist. Prof. Dr. Ahmed Mohamed Ahmed Said Assistant Professor of Obstetrics and Gynecology Kasr El Aini Faculty of Medicine, Cairo University

Faculty of Medicine Cairo University 2009

Abstract

Background:

Progress in reproductive technology has shown that Nitric Oxide (NO) is involved in fertilization process and is found in the follicle as well as the sperm, decidualization and implantation. Endometrial growth is thought to depend on uterine artery blood flow and the importance of endometrial development on in-vitro fertilization (IVF) outcome has been previously reported. Sildenafil citrate (Viagra) is a type 5-specific PDE inhibitor that prevents the breakdown of cGMP and potentiates the effect of NO on vascular smooth muscle.

Patient and methods:

This is a prospective randomized controlled study. Fifteen cases will be given sildenafil citrate with IVF preparatory protocol and the other Fifteen cases will be used as a control cases (they will be given IVF induction protocol without sildenafil). Inclusion and exclusion were set.

Conclusion:

The notion of increasing pregnancy rate among women undergoing ICSI is still far from reality. Among factors affecting implantation rate and pregnancy rate, endometrial thickness remain poorly understood. The use of vaginal sildenafil showed no significant increase in endometrial thickness in cases undergoing ICSI. Yet metaphase II, cleaved embryos, number of embryo transfer/cycle and finally implantation rate increased which may be due to improvement of endometrial and ovarian microvascular circulation or decrease NK activity. More controlled randomized trials with large sample size are needed to address these issues.

Key words:

Endometrium / Implantation / Intracytoplasmic sperm injection/ Sildenafil/Uterine artery blood flow.

ACKNOWLEDGMENT

I wish to express my deepest thanks and grattitude to **Prof. Dr. Soumaya Mohamed Hassan Abou Elew**, Professor of Obstetrics and Gynecology Kasr El Aini Faculty of Medicine, Cairo University who gave me the honor of working under her supervision and who was kind enough to offer me much of her valiable time and sincere advice.

I wish to express my deepest gratitude to Assistant Prof. Dr. Osama Mahmoud Azmy, Assistant Professor of obstetrics and gynecology National Research Center for his kind supervision, continous encouragement and guidance as well as his moral support throughout work.

I would also like to thank very much **Dr. Ahmed Mohamed Ahmed Said**, Assisstant professor of Obstetrics and Gynecology

Kasr El Aini Faculty of Medicine, Cairo University for his encouragement and supervision on this work and the valuable discussions with objective criticism which are gratefully appreciated.

I am especially and deeply gratefull to **Dr. Tamer Fouad Taha**, Lecturer of Obstetrics and Gynecology National Research
Center, and **Dr. Mamdouh Abd El Asis**, Lecturer of Obstetrics and
Gynecology National Research Center for their encouragement
and guidance.

DEDICATION

TO MY FATHER, MOTHER AND SISTER FOR THEIR SUPPORT AND ENCOURAGMENT

CONTENTS

	Page
INTRODUCTION	1
AIM OF WORK	3
REVIEW OF LITERATURE:	
CHAPTER I: Assisted Reproductive Technology	4
CHAPTER II: Intracytoplasmic Sperm Injection (ICSI)	30
CHAPTER III: Implanation and Uterine Receptivity	46
CHAPTER IV: Sildenafil Citrate	70
PATEINTS AND METHODS	
RESULTS	86
DISCUSSION	98
SUMMARY & CONCLUSION	109
REFERENCES	114
ARABIC SUMMARY	

LIST OF FIGURES

Figure No.	Title	Page No.
1	Invitro fertilization principle and procedure	5
2	Common abnormalities found in human sperm morphology.	9
3	A photograph of Puncturing system with needle guide connected to the vaginal transducer used in the study.	20
4	Ovum pickup through transvaginal ultrasound	20
5	Sonogram showing Embryo Transfer, embryo and tip of catheter.	22
6	Catheter loading graphic.	23
7	Treatment scheme of Ovarian Hyperstimulation Syndrome.	28
8	ICSI of mature (М П) denuded oocyte.	30
9	Intracytoplasmic sperm injection manipulator.	37
10	Human prezygote with two pronuclei on day 1.	39
11	Human 2-cell embryo on day 3 and human expanded Blastocyst on day 5.	41
12	Model of human implantation	50
13	Chemical formula of sildenafil citrate	70
14	Demographic characters of the studied women.	89
15	Comparison between mean FSH abd LH levels between two groups	89
16	Induction of Ovulation Parameters	91
17	Endometrial Thickness Before And After Sildenafil	93
18	Oocyte quality criteria	95
18	Pregnancy Outcome	97

LIST OF TABLES

Table No.	Title	Page No.
1	2004 SART/ASRM Guidelines for number of embryos transferred	24
2	Performance of oocytes had undergone ICSI according to cytoplasmic morphology.	33
3	Damage, fertilization, and embryo development after ICSI with ejaculated, epididymal, and testicular spermatozoa.	35
4	Pharmacologocal Charachteristics of Sildenafil Citrate.	71
5	Demographic characters of the studied women	88
6	Induction of ovulation parameters:	90
7	Endometrial thickness before and after use of sildenafil	92
8	Oocyte quality criteria	94
9	Pregnancy outcome	96

LIST OF ABBREVIATIONS

ART Assissted Reproductive Technology

CAMS Cell Adhesion Molecules

CGMP Cyclic Guanosine Monophosphate

CPR Clinical Pregnancy Rate

CSF-1 Colony Stimulating Factor

DF Dominant Follicle

EEC Endometrial Epithilial Cells

EFP Early folliclar phase

EPF Early Pregnancy Factor

FDA Food and Drug Administration

FET Frozen Embryo Transfer

GIFT Gamete Intra Fallopian Transfer

GNRH Gonadotropin Releasing Hormone

HB-EGF Heparin- Binding Epidermal Growth Factor

HCG Human Chorionic Gonadotropin

HEPES 4-(2-Hydroxyethyl)-I-Pirazine-Ethane-Sulphonic Acid

HIV Human Immunodefeciency Virus

ICAM-1 Intercellular Adhesion Molecule-1
ICSI Intra Cytoplasmic Sperm Injection

IGF Immunoglobulin Factor

IL-1 Interleukin 1

IUI Intra Uterine Insemenation

IVF Invitro Fertilization

LH Leutinizing Hormone

LIF Leukima Inhibitory Factor

LPD Leuteal Phase Defect

MDMA Methylene dioxymethamphetamine

MESA Microsurgical Epidedimal Sperm Aspiration

MUC1 Mucin 1

NK Natural Killer

NO Nitric oxide

PAH Pulmonary Artirial Hypertension
PAI-1 Plasminogen Activator Inhibitor 1

PDE5 Phosphodiesterase type 5

PFBF Ovarian perifollicular blood flow

PGD Preimplantation Genetic Diagnosis

PGD-AS Preimplantation Genetic Diagnosis—Aneuploidy Screening

PN ProNuclei

PR Progesterone Receptor
PVP PolyViniylPyrrolidone

PZD Partial Zona Dessection

RM Recurrent miscarriage

SUZI SubZonal Insemination

TEP Tubal Ectopic Pregnancy

TESE Testicular Sperm Extraction

TET Tubal Embryo Transfer

TGF-B Transforming Growth Factot b

TIMP Tissue Inhibitor of Metalloprotinases

VGR Viagra

ZIFT Zygote Intra Fallopian Transfer

INTRODUCTION

Infertility is one of the major medical and social problems and has received considerable international attention. Infertility affects approximately 10-15% of the couples and is important part of clinical practice for many clinicans (Mosher and Partt, 1991). Fortunately for many of these couples, the problem is over when some conceive spontaneously without undergoing any investigation or therapy, few others become pregnant after being investigated and treated for the correctable factors (Robert et al., 1991).

Assisted reproductive technologies (ART) encompass all techniques involving direct manipulation of oocytes outside of the body. The commonest forms of ART are Invitro fertilization (IVF) and intracytoplasmic sperm injection (ICSI). These techniques provide hope for many couples who are unable to concive naturally. While results of ICSI have improved much and are associated with pregnancy rates that approach spontaneous fecundity, unfortunately there is considerable discrepancy between results of fertilization and implantation resulting into what is called implantation failure (Stern and Chamley, 2006).

Implantation itself is governed by an array of endocrine, paracrine and autocrine modulators, of embryonic and maternal origin. Implantation failure is thought to occur as a consequence of impairment of embryo developmental potential and/or impairment of uterine receptivity and the embryo-uterine dialogue. Therefore a better comprehension of implantation, and the relative importance of the factors involved, is warranted. New techniques for monitoring changes in the

endometrium and/or the embryo at the level of gene regulation and protein expression may lead to the identification of better markers for implantation. Moreover, the use of predictive sets of markers may prove to be more reliable than a single marker. Continuing refinements to ART protocols, such as optimizing ovarian stimulation regimens, the timing of human chorionic gonadotrophin injection, or the timing of embryo transfer, should help to increase implantation rates further (**Diedrich et al., 2007**).

There is a lot of debate on the administration of low-dose aspirin, estrogen, vaginal sildenafil citrate, pentoxifylline, vitamin E, and gonadotropin - releasing hormone agonist for the management of thin endometrium with an aim to increase the pregnancy and implantation rates in assisted reproductive technology cycles. Various recent modalities proposed for the treatment of thin endometrium seem to be useless and inefficient from an evidence-based medicine point of view (Senturk, 2008).

AIM OF WORK:

To assess the role of sildenafil in increasing pregnancy rate in cases undergoing intracytoplasmic sperm injection through improving the endometrial vascular blood supply.

CHAPTER I

Assisted Reproductive Technology

Definition:

Assisted reproductive technologies (ART) encompass all techniques involving direct manipulation of oocytes outside of the body. The first and still most common form of ART is in vitro fertilization (IVF), but there are a number of other related techniques within the realm of ART (*Sabatini et al.*, 2006).

ART also includes methods for assisted fertilization by intracytoplasmic sperm injection (1CSI) using sperm isolated from the ejaculate or obtained by microsurgical epididymal sperm aspiration (MESA) or testicular sperm extraction (TESE), assisted embryo hatching, and preimplantation genetic diagnosis (*Anderson and Erb*, 2006).

Other forms of ART involve the tubal transfer of oocytes and spermatozoa (gamete intrafallopian transfer; GIFT), zygotes (zygote intrafallopian transfer; ZIFT), or embryos (tubal embryo transfer; TET) via laparoscopy (*Basso and Olsen, 2005*).

In vitro fertilization (IVF):

IVF involves a sequence of highly coordinated steps beginning with controlled ovarian hyper-stimulation with exogenous gonadotropins, followed by retrieval of oocytes from the ovaries under transvaginal ultrasound guidance, fertilization in the laboratory, and transcervical transfer of embryos into the uterus. The first child resulting from IVF was born in 1978 (Mikkelsen, 2005). (FIG. 1)

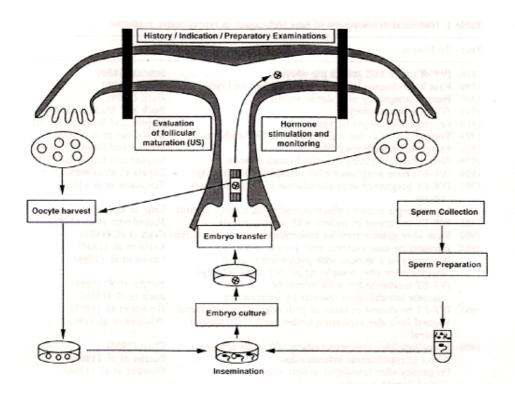


Figure (1): Invitro fertilization principle and procedure (Rabe et al., 2000).

Indications for IVF:

IVF was first developed as a means to overcome infertility resulting from irreparable tubal disease, but it is now applied much more broadly for the treatment of almost all causes of infertility as:

1- Tubal Factor Infertility:

• Distal Tubal Obstruction:

IVF is now the treatment of choice for infertile women with severe tubal disease. IVF is also the best treatment for women who remain infertile for a year or more after successful tubal surgery, for older women with any significant degree of distal tubal disease and for women with recurrent distal tubal obstruction (repeated attempts to correct distal tubal occlusive disease are rarely successful) (American Society for

Reproductive Medicine and Centers for disease Control and Prevention, 2003).

Accumulated evidence indicates that communicating hydrosalpinges (proximal patency and distal occlusion) decrease the probability of both pregnancy and live birth after IVF by approximately one-half (Johnson et al., 2001). The most possible mechanism is that hydrosalpingeal fluid is an inflammatory exudate and may have toxic effects on embryos or the endometrium or may mechanically interfere with implantation (Strandell and Lindhard, 2002).

• Proximal Tubal Obstruction:

Although bilateral proximal tubal obstruction can often be treated successfully with fluoroscopic or hysteroscopic tubal • cannulation or more traditional microsurgical techniques, IVF is the obvious alternative when surgery is technically unsuccessful, relatively contraindicated (salpingitis isthmica nodosa), or infertility persists for more than 6-12 months postoperatively (**Thompson, 2006**).

Tubal cannulation can be used effectively to restore patency in a proportion of cases of proximal tubal obstruction thus avoiding the need for expensive assisted reproductive techniques (Das et al., 2007).

• Bipolar Tubal Obstruction:

IVF is the best and most logical treatment for women with bipolar (proximal and distal) tubal obstruction because success rates achieved with surgery are extremely poor (Stephen and Chandra, 2000).