

Physics Department

"Nuclear Structure and double Beta —decay in the mass region around A≈130 Interacting Boson-Fermion Model"

Dissertation Submitted for the Degree of Doctor of Philosophy in Nuclear Physics

BY SALEM A. ABU MUSLEH

M. Sc in Physics
Faculty of science- Tripoli University -Libya
Supervised by

Prof. Dr. Hosnia M. Abu-zeid Prof. of Nuclear Physics,

Faculty of Women for Arts, Science and Education, Ain Shams University Prof. Dr. Omer M. Desouky

Prof. of Biophysics, Egyptian Atomic Energy Agency.

Prof.Dr.Daw S. Mosbah

Prof.of Nuclear Physics, Arab Atomic Energy Agency-Tunis

Prof. Dr. Afaf Abd El-Lateef Nada

Prof of Nuclear Physics, Faculty of Women for Arts, Science and Education, Ain Shams University Dr. Thanaa M. Abd EL-Maksoud

Ass.Prof of Nuclear Physics, Faculty of Women for Arts, Science and Education, Ain Shams University

Physics Department

"Nuclear Structure and double Beta —decay in the mass region around A≈130 Interacting Boson-Fermion Model"

Dissertation Submitted for the Degree of Doctor of Philosophy in Nuclear Physics.

BY

SALEM A. ABU MUSLEH M. Sc in Physics

Supervisors

Prof. Dr. Hosnia M.Abu-zeid Prof. Dr. Omer M.Desouky Prof.Dr.Daw S. Mosbah Prof.Dr. Afaf Abd El-Lateef Nada Dr. Thanaa M. Abd EL-Maksoud

Approval Stamp
/ /2014

Date of Approval
/ /2014

Approval of Faculty Council
/ /2014

Approval of University Council
/ /2014

Physics Department

ACKNOWLEDGEMENT

All praise be to Allah for His bounty and blessing letting me finish this work. This thesis, as well as, my entire scientific career, could not have been accomplished without the help, support, and understanding of all the people I have been so lucky to work with during the period of the present work.

I am indebted to:

Prof.Dr.Hosnia Abuzaid, for her excellent supervision and guidance.

Thanks Go also to **Prof. Dr. Afaf M. Nada, Prof. Dr. Daw S. Mosbah Prof. Dr Omar M. Desouky and Dr. Thana M. Abedel Maksoud** for their valuable consultations and continuous assistance through out this process. You have been advisors in the true sense of the word, and I would not have made it through this without your unwavering help, support, and more importantly, for treating me as a colleague and a friend.

My sincere gratitude for:

Prof. Dr. Olaf Scholten for his endless support and enthusiasm. He always have time to answer all my curious questions over 12 years. Also, my sincere gratitude and acknowledgment for letting me introduce the W nuclei paper into my thesis. The paper added a great value to my work.

I'm really full of gratitude and appreciation to my parents, my wife "Um-Mohamoud", my sons Mohamed, Mint Allah, Awab, Moad, Tala and Ahmed parallel to their support, patience and encouragement all over the time.

Finally, I'm grateful to all relatives and friends for their continuous inspiration

Physics Department

ABSTRACT

Theoretical calculations using the Interacting **Boson-Fermion** 183,185,187 W Approximation (IBFA-1) of the structure of $^{123,125,127,129,131}_{123,125,127,129,131}$ Xe and $^{123,125}_{123,125}$ I were made. For $^{183,185,187}_{123,125}$ W the fermion is coupled to the system of bosons is taken to be in the negative parity $2f_{7/2}$, $2f_{5/2}$, $3p_{3/2}$, $3p_{1/2}$ and in the positive parity $1i_{13/2}$ single-particle orbits, where for ^{123,125,127,129,131}Te, ^{125,127,129,131}Xe and ^{123,125}I the fermion that is coupled to the system of bosons is taken to be in the negative parity $3s_{1/2}$, $2d_{3/2}$, $2d_{5/2}$, $1g_{7/2}$ and in the positive parity 1i_{11/2} single-particle orbits, The calculated energies of low-spin energy levels of the odd isotopes are found to agree well with the experimental data. Also B(E2), B(M1) values and spectroscopic factors for singleneutron transfer are calculated and compared with experimental data. We wish to point out that, while our calculation with IBFM is standard, studies of this type are important to push the model towards applications to problems related to beta and double-beta decay.

Physics Department

Thesis included seven chapters:

Chapter 1

A general introduction to the Interacting Boson Model (IBM1), which used in even-even nuclei calculations. In addition an extension for this model (Interacting Boson Fermion Model(IBFM)) is presented for even-odd nuclei calculations.

Chapter 2

A detailed explanation of the models connection to group theory is presented in this chapter. Group theory used to simplify the model Hamiltonian which dignolized using PHINT computer code for even-even nuclei and ODDA code for odd-even nuclei. Many nuclear propitiates were calculates using these codes as energy levels, parity, and electromagnetic transitions.

Chapter 3

In this chapter a detailed calculation of the nuclear structure are presented for even-even $^{182,184,186}W$. Depending on group theory classification a nice shape change of these nuclei remarked from O(6) to SU(3) in $^{182,184,186}W$ nuclei .

Chapter 4

In this chapter a detailed coupling of single fermion in odd-even nuclei to its even-even core is discussed.

Chapter 5

The properties of nuclear structures, such as parity, energy levels, the spectroscopic factors, and electromagnetic addition are calculated for odd-even ^{183,185,187}Wusing. It should be noted that the results are published in the Nuclear Physic A Journal. Due to the success in present

Physics Department

calculations, referee of our paper recommended of using this model in single and double beta decay.

Chapter 6

The properties of nuclear structures, such as parity, energy levels, the spectroscopic factors, and electromagnetic transitions are calculated for odd-even ^{125,127,129,131}Xe and ^{123,125,127,131}Te. We depended on a new even-even calculations(**S. Pascu et al., [2010]).** Our calculation also published in Nuclear Physic A, where the referee described them as a careful study presented Novel aspects worthy of publishing. In this paper we used same single fermion parameters.

Chapter 7

In this chapter we used even-even core of Te isotopes to describe odd-even ¹²³⁻¹²⁵I nuclei. Parity, energy levels, the spectroscopic factors, and electromagnetic transitions are compared to data. These calculations accepted in the Eleventh Arab Conference on the Peaceful Uses of Atomic Energy, Sudan, 2012.

Contents

Acknowledgement Abstract Contents.....I List of Figures.....V List of Tables.....VII CHAPTER1 INTRODUCTION AND LITEIRATURE REVIEW Page CHAPTER 2 **OUTLINES OF INTERACTING BOSON APPROXAMIATION** (*IBA-1*) 2.2.1 The Hamilton.

2.3 Dynamical Symmetries
2.3.1The SU(5)limit
2.3.2The SU(3) limit
2.3.3 The O(6) limit
2.4 Energies
CHAPTER 3
APPLICATIONS TO THE Even-Even 182,184,186 W ISOTOPES
3.1 Introduction
3.2 The Even–Even core
3.3 E2 Transitions
3.4 Summary
CHAPTER 4
INTERACTING BOSON-FERMUON MODELIBFM-1
4.1 Introduction
4.2 IBFM-1 Hamiltonian
4.3 E2 and M1 Transitions
4.4 Spectroscopic factors

CHAPTER 5

APPLICATIONS TO THE 183,185,187W ISOTOPES

5.1 Introduction	45
5.2Excitation Energies	48
5.3 E2 Transitions	54
5.4 Spectroscopic factors	56
5.5 Summary	59
<u>CHAPTEI</u>	<u>R 6</u>
APPLICATIONS TO THE Telluri	ium ^{123,125,127,129,131} Te ANL
<u>Xenon</u> ^{125,127,129,131} Xe	<u> ISOTOPES</u>
6.1 Introduction	60
6.2 Excitation Energies	62
6.3 E2 & M1 Transitions	79
6.4 Spectroscopic factors	86
6.5 Double Beta Decay	94
6.6 Summary	07

CHAPTER 7

APPLICATIONS TO THE 123,125 I ISOTOPES

7.1 Introduction	98
7.2 Excitation Energies	98
7.3 E2 Transitions	104
7.4 Spectroscopic factors	105
7.5 Summary	107
Conclusion	108

LIST OF FIGURES

Fíg No.	Item	Page
No.		
2.1	A typical spectrum with SU(5) symmetry for	16
	N=6. In parenthesis are the values of γ and n_{δ}	
2.2	A typical spectrum with SU(3) symmetry for	18
	N=6. With the parenthesis the values of λ	
	and μ . Which label the SU(3) representation	
	are given.	
2.3	A typical spectrum with 0(6) symmetry and	23
	N= 6. In parenthesis are the values of σ and	
	n_{δ} .	
3.1	Calculated energy levels for the even-core	30
	nuclei ¹⁸² W .	
3.2	Calculated energy levels for the even-core	31
	nuclei ¹⁸⁴ W	
3.3	Calculated energy levels for the even-core	32
	nuclei ¹⁸⁶ W.	

5.1	Calculated energies for ¹⁸³ W are compared to	51
	data. For each level the excitation energy in	
	keV is given as well as the spin (×2) and	
	parity.	
5.2	Some as Fig 5 1 but for 185W	F2
5.2	Same as Fig. 5.1 but for ¹⁸⁵ W	52
5.3	Same as Fig. 5.1 but for ¹⁸⁷ W	53
3.3	Same as Fig. 3.1 but for W	33
6.1	Calculated energies for ¹²³ Te are compared to	70
	data . For each level the excitation energy in	
	keV is given as well as the spin $(\times 2)$ and	
	parity.	
	7 7 7 1 1 1 2 125-	
6.2	Same as Fig. 6.1 but for ¹²⁵ Te.	71
6.3		72
	Same as Fig. 6.1 but for ¹²⁷ Te	
6.4	Same as Fig. 6.1 but for ¹²⁹ Te	73

	101	
6.5	Same as Fig. 6.1 but for ¹³¹ Te	74
6.6	Same as Fig. 6.1 but for ¹²⁵ Xe	75
6.7	Same as Fig. 6.1 but for ¹²⁷ Xe	76
6.8	Same as Fig. 6.1 but for ¹²⁹ Xe	77
6.9	Same as Fig. 6.1 but for ¹³¹ Xe	78
6.10	Behavior of single fermion parameters in A=130 and A=180 region	94
6.11	Calculated spectroscopic factors for $s_{1/2}, d_{3/2}, d_{5/2}$	95
6.12	$M^{(0\nu)}$ as function of neutron number	96
6.13	Calculated energies for ¹²³ I are compared to data[http://www.nndc.bnl.gov/]. For each level the excitation energy in keV is given as well as the spin (×2) and parity.	99
6.14	Same as Fig 7.1 but for ¹²⁵ I.	100

List of Tables

Table	Item	Page
No.		
3.1	The IBM-1 parameters as used in our calculations.	29
3.2	Calculated B(E2) values in (e^2b^2) for transitions in the ^{182}W isotopes are compared to experimental data and a previous work by Duval and Barrett .	34
3.3	Calculated B(E2) values in (e^2b^2) for transitions in the ¹⁸⁴ W isotopes are compared to experimental data and a previous work by Duval and Barrett .	35
3.4	Calculated B(E2) values in (e^2b^2) for transitions in the ^{186}W isotopes are	36

	compared to experimental data and a	
	previous work by Duval and Barrett	
5.1	Occupation probabilities and quasi-particle	49
	energies for the $2f_{7/2}, 2f_{5/2}, 3p_{3/2}, 3p_{1/2}$ and the	
	1i _{13/2} single-particle orbits(s.p.o) as used in	
	the calculation of the ^{183,185,187} W isotopes.	
5.2	Calculated and experimental B(E2) for	55
	^{183,185,187} W isotopes values.	
5.3	Spectroscopic factors for one neutron	57
	transfer from the ground state of ¹⁸² W to	
	various excited states in ¹⁸³ W are compared	
	with the data.	
5.4	Spectroscopic factors for one neutron	58
	transfer from the ground state of ¹⁸⁶ W to	
	various excited states in ¹⁸⁷ W are compared	
	with the data.	
6.1	The IBFM parameters as used in 123-131Te	64
	calculations compared to published values.	
	All parameters are in MeV except χ	
	dimensionless	
6.2	The $\Lambda 0$ parameter as used in $^{125-131}$ Xe	65
	calculations compared to published values.	
6.3	The Γ_0 parameter as used in $^{125-131}$ Xe	65