الأهمية الإكلينيكية لإنزيم محول الأنجيوتنسين كدلالة على التليف الكبدى في مرضى متلازمة الباد كياري

رسالة

توطئة للحصول على درجة الماجستير في الباثولوجيا الإكلينيكية والكيميائية

مقدمة من

الطبيبة / ريهام عماد عبدالعزيز

بكالوريوس الطب والجراحة العامة - كلية الطب - جامعة طنطا

ة ح ةؤسف .

الأستاذ الدكتور / منى فتحى يوسف الأستاذ الدكتور/ محمد أمين صقر

أستاذ الأمراض المتوطنة

أستاذ الباثولوجيا الإكلينيكية والكيميائية

كلية الطب - جامعة عين شمس

كلية الطب – جامعة عين شمس

الدكتور / ميرفت شفيق يوسف

أستاذ مساعد الباثولوجيا الإكلينيكية و الكيميائية

كلية الطب - جامعة عين شمس

كلية الطب جامعة عين شمس 2014

Clinical Utility of Angiotensin Converting Enzyme as a Marker of Liver Fibrosis in Budd Chiari syndrome

Thesis

Submitted for partial Fulfillment of Master Degree in Clinical and Chemical Pathology

By

RihamEmadAbd El Aziz

M.B,B.Ch. Tanta University

Supervised by

Prof. Mona Fathy Youssef Prof. Mohamad Amin Sakr

Prof. of Clinical & Chemical Pathology Faculty of Medicine Ain Shams University

Professor of Tropical Medicine Faculty of Medicine Ain Shams University

Dr. MervatShafikYousef

Ass. Prof. of Clinical and Chemical Pathology Faculty of Medicine Ain Shams University

> **Faculty of Medicine Ain Shams University** 2014

List of contents

Subject	Page
List of abbreviations	Ii
List of tables	vii
List of figures	ix
Introduction	1
Aim of the work	3
Review of literature	4
I- Chronic Liver Disease	4
II- Budd Chiari Syndrome	32
III- Angiotensin Converting Enzyme	55
Subjects and Methods	91
Results	109
Discussion	121
Summary	126
Conclusion	129
Recommendations	130
References	131
Arabic Summary	_

List of abbreviations

Ab Antibody

ACE Angiotensin converting enzyme

ACE1 Angiotensin converting enzyme type 1

ACE2 Angiotensin converting enzyme type2

ACEi Angiotensin converting enzyme inhibitors

ADH Anti-diuretic hormone

AFP Alpha fetoprotein

Ag Antigen

AGT Angiotensinogen

AH Alcoholic hepatitis

AIH Autoimmune hepatitis

ALD Alcoholic liver disease

ALP Alkaline phosphatase

ALT Alanine transaminase

AMM Agnogenic myeloid metaplasia

ANA Antinuclear-antibodies

ANP Atrial natriuretic peptide

APA Antiphospholipid antibodies

APCR Activated-protein-C-resistance

APRI The AST to Platelet Ratio Index

APS Antiphospholipid syndrome

ARBs Angiotensin receptor blockers

AST Aspartate transaminase

AT Antithrombin III deficiency

AT1 Angiotensin type 1

AT1R Angiotensin II type 1 receptor

AT2R Angiotensin II type 2 receptor

AUC Area under curve

BCP Basal core promoter

BCS Budd–Chiari syndrome

BP Blood pressure

CBC Complete blood count

CF Cystic-Fibrosis

CFLD Cystic Fibrosis liver disease

CFTR Cystic Fibrosis conductance Transmembrane

CL Chemiluminescence immunoassay

CLD Chronic-liver-diseases

CML Chronic myelogenous leukemia

COPD Chronic obstructive pulmonary diseases

CT Computerize Tomography

CTGF Connective tissue growth factor

DAB diamino-benzidine

ECM Extracelluler matrix

EIAs Enzyme-immunoassays

ELF Enhanced Liver Fibrosis

ELISA Enzyme-linked immunosorbent assay

ELISPOT Enzyme-linked-immunosorbent-spot

ET Essential thrombocythemia

FAB French American –british

Factor Va Factor-V-activated

FC Flow Cytometry

FVLM Factor-V-Leiden-mutation

gACE Germinal ACE

GD Graves' disease

GFR Glomerular filtration rate

GGT Gamma-glutamyltransferase

GSD Glycogen storage diseases

HBV Hepatitis B virus

HCC Hepatocellular carcinoma

HCV Hepatitis C virus

HDV Hepatitis D virus

HE Hepatic encephalopathy

HH Hyperhomocysteinemia

HHL HippurylHistidylLeucine

HPLC High-performance liquid chromatography

HSC Hepatic stellate cells

I/D insertion/deletion

IHC Immunohistochimistry

IL Interlukin

INF-β beta-interferon

INR international normalization ratio

IP Immune precipitation

IVC Inferior vena cava

JNK Jun N-terminal kinase

KB Kilobase

LDH Lactate dehydrogenase

MF Myelofibrosis

MMPs Metalloproteinases

MOVC Membranous obstruction of inferior vena cave

MPDs Myeloprolifrative disorders

MRI Magnetic resonance imaging

MS Multiple sclerosis

MTHFR Methyl –tetra-hydro-folate-reductase

NAFLDs Non-alcoholic fatty liver diseases

NASH Non-alcoholic steatohepatitis

PBC Primary biliary cirrhosis

PC Protein C

PG Prostaglandin

PM Prothrombin mutation

PS Protein S

PT Prothrombin time

PV Polythcythemiavera

PVT Portal vein thrombosis

RA Rheumatoid arthritis

RAAS Renin angiotensin aldosterone system

RAS Renin angiotensin system

ROC Receiver Operating Characteristic

ROS Reactive oxygen species

sACE Somatic ACE

SDS Sodium dodecyl sulfate

SGPT Serum glutamic pyruvate transaminase

TGF-β1 Transforming growth factor-β1

TIPS Transjugular intrahepatic portosystemic shunt

TMB TetramethylbenzidineTMB Tetramethylbenzidine

TNF-α Tumor necrosis factor alfa

TP Total protien

WB Western blot

WBC White blood cells

WD Wilson disease

List of Tables

Tab. No.	Title	Page
Table 1	Different types of liver disease	17
Table 2	The conversion of FibroTest score into stages according to the three most used histological classifications (METAVIR, Knodell and Ishak) for liver biopsies	27
Table 3	Causes of Budd Chiari Syndrome	45
Table 4	Selected AT1 and AT2 Receptor-Mediated Effects of Angiotensin II	69
Table 5	The reference ranges of ACEby ELISA	79
Table 6	The reference range of ACEby ELISA	81
Table 7	Descriptive Statistical Data of the Various Studied Parameters in all Studied Groups (BCS group, HCV group and healthy control group)	112
Table 8	Comparative Statistics between BCS, HCV and healthy control groups regarding different studied parameters using ANOVA or KruskallWallis test	114
Table 9	Comparative Statistics between BCS and HCV subgroups regarding different studied parameters using ANOVA orKruskallWallis test	115
Table 10	Comparative Statistics between BCS, HCV and healthy control groups regarding markers of liver fibrosis usingMann-Whitney test	116
Table 11	Correlation between ACE and other studied parameters in BCSwhole patients group	117
Table 12	ROC curve analysis for assessment of the diagnostic performance of ACE for discriminating whole BCS group from healthy control	118
Table 13	ROC curve analysis for assessment of the	119

	diagnostic performance of ACEfor discriminating BCS stage III fibrosis from healthy control	
Table 14	ROC curve analysis for assessment of the diagnostic performance of ACEfor discriminating stage III fibrosis from stage IV in BCS	120

List of Figures

Fig. No.	Title	Page
Figure 1	Anatomy of the Liver- front view	5
Figure 2	Anatomy of the Liver	6
Figure 3	blood supply of the liver	7
Figure 4	Structure of human ACE	55
Figure 5	Three-dimensional appearance of somatic ACE	58
Figure 6	Renin-angiotensin system cascade for the formation of angiotensin II. AT ₁ receptors, angiotensin type 1 receptors	62
Figure 7	Classical' renin–angiotensin system (RAS)	64
Figure 8	Overview of the RAS	65
Figure 9	Role of ACE in the RAS and Kinin- Kallikrein systems	67
Figure 10	The potential role of the renin-angiotensin- aldosterone (RAS) system in the pathogenesis of liver diseases	75
Figure 11	Counterbalancing effects of the two axes of the rennin –angiotensin system (RAS)	75
Figure 12	Diagram showing sandwich ELISA steps	
Figure 13	Principle of immune precipitation	
Figure 14	Western blot	84
Figure 15	Principle of immunohistochemistry	87
Figure 16	ACE in human kidney by Immunohistochemistry. Tissue Staining Kit (brown); and counterstained with hematoxylin (blue)	88
Figure 17	Principle of Flow Cytometry	90
Figure 18	Serial dilution of ACE standard	99

Figure 19	Box-blot figure showing ACE median, IQR, range in different studied groups	113
Figure 20	ROC curve analysis showing the diagnostic performance of ACE for discriminating patients with whole BCS from those with healthy control	118
Figure 21	ROC curve analysis showing the diagnostic performance of ACE for discriminating patients with BCS group (stage III) from those with healthy control	119
Figure 22	ROC curve analysis showing the diagnostic performance of ACE for discriminating patients with stage III from those with stage IV in BCS group	120

First and foremost thanks to AlmightyGOD, the most merciful and kind for helping throughout this work to be completed in this form.

I would like to express my deepest gratitude and appreciation to **Prof. Dr. Mona FathyYoussef,** Professor of Clinical and Chemical Pathology, Faculty of Medicine, Ain Shams University, who supervised this study and provided me the finest details and rules to write this fruitful thesis. Also she taught me how to listen and respect the small points before the big ones. It's a great honor to work under her guidance and supervision.

My deep gratitude goes to**Prof. Dr. Mohamad Amin Sakr,**Prof. of Tropical Medicine, Faculty of Medicine, Ain Shams University, for his effort and updated knowledge. He taught me how to gather scientific data from different books and updated papers.

My deep thanks to **Dr. Mervat Shafik Yousef,** Prof. of Clinical and Chemical Pathology, Faculty of Medicine, Ain Shams University, for her kind assistance and because she allowed me.

Special words for my lovely **Family** for their tenderness, love, care and encouragement whom without, I could not probably finished this thesis.

RihamEmad

"قَالُوا سُبْحَانَكَ لاَ عِلْمَ لَنَا إِلاَّ مَا عَلَّمْتَنَا إِلاَّ مَا عَلَّمْتَنَا إِلَّا مَا عَلَّمْتَنَا إِلَّا مَا عَلَّمْتَنَا إِلَّا مَا عَلَّمْتَنَا إِلَّا مَا عَلَيْمُ الْحَكِيمُ"

صدقاللهالعظيم

سورة البقرة الآية (32)

INTRODUCTION

Budd-Chiari syndrome (BCS) is characterised by obstruction of the hepatic venous outflow at any level from the small hepatic veins to the right atrium. It leads to post-sinusoidal portal hypertension and congestion of the liver with caudate-lobe hypertrophy. Ascites occurs because of post-sinusoidal portal hypertension as opposed to sinusoidal or presinusoidal portal hypertension, which frequently complicates most forms of cirrhosis (**Hernandez et al., 2006**).

In patients with BCS, the haemodynamic profile differed significantly from that in cirrhotic patients; BCS patients demonstrated normal cardiopulmonary haemo-dynamics with an expanded plasma volume, with no evidence of systemic vasodilatation (**Joshi et al.**, **2011**).

Congestion, liver cell loss and fibrosis in centrilobular area are considered characteristic features for BCS (Ludwiy et al., 1990).

Evidences suggest that the rennin-angiotensin system (RAS), acts as a mediator of inflammation and fibrosis in chronic liver disease. RAS mediates its fibrogenic effects through the activation of hepatic stellate cells (HSC) with their proinflammatory and profibrotic potential (Barham et al., 2010).

The rennin-angiotensin-aldosterone (RAS) axis is a system which involves many essential regulations in the human body for blood pressure; fluid and electrolyte balance (Beyazit et al., 2010). In recent

years, the importance of the RAS system in pathogenesis of a number of diseases has been increasingly reported. Moreover, angiotensin-converting enzyme (ACE), a vital part of the RAS system, is cogitated as a governing molecule in systemic and portal circulation in some disorders (hepatitis B, chronic kidney disease, essential hypertension and stable ischemic heart disease) (Beyazit et al., 2011 and purnak et al., 2012)