

Complications of Metal on Metal Resurfacing Hip Arthroplasty

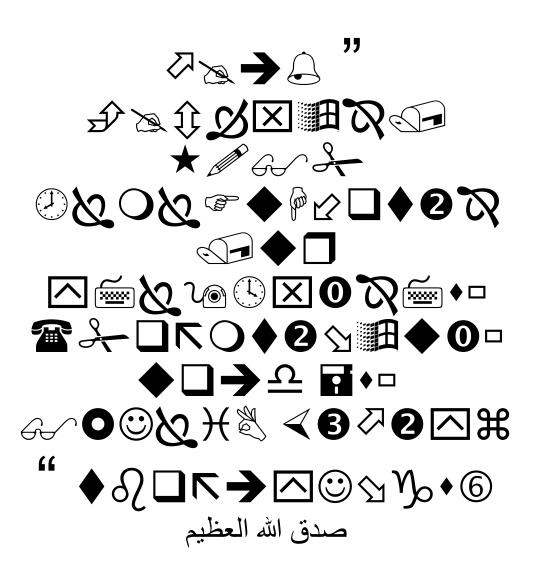
Essay for the partial fulfillment of niaster degree in orthopedic surgery

Submitted by

Mostafa Ibrahim Soliman Mohamed Abdou (M.B; B.Ch)

Under Supervision of

Prof. Dr. Ahmed Emad Eldin Rady


Professor of orthopedic surgery Ain Shams University

Dr. Amr Abdelkader Hammad

Ass. Professor of orthopedic surgery
Ain Shams University

Ain Shams University 2010

سورة يونس الآية 58

ACKNOWLEDGMENT

I thank **Allah** the most graceful for the knowledge and persistence to accomplish this work.

I would like to express my deep gratitude to Prof. **Dr. Ahmad Emad** for his guidance and supervision of this work.

I would also like to thank **Dr. Amr Abdel Kader** for his continuous supervision through meticulous revision of this work.

In addition, I express my gratitude and admiration for **Prof. Dr. Mohammad Wafa,** for his continuous encouragement and advice since my undergraduate years.

I will always be thankful to my father and mother for their guidance and inspiration, and to my brother for his help and encouragement.

Finally, I would like to thank my beloved wife and children who were a constant source and motivation.

CONTENTS

List of Figures	II
List of Tables	IV
List of Abbreviations	V
Introduction	1
Chapter One: The Reviving of the resurfacing cond by the metal on metal bearing.	cept 5
Chapter Two: The concerns limiting the enthusiasm surgeons to the new technique.	of 20
Chapter Three: General complications associated was metal on metal resurfacing arthroplasty.	vith 27 hip
Chapter Four: Local complications associated was metal on metal resurfacing arthroplasty.	vith 49 hip
Chapter Five: Discussion recent reports concern complications associated with metal metal resurfacing hip arthroplasty.	_
Chapter Six: Conclusion	166
Summary	171
References	174
Arabic Summary	-

LIST OF FIGURES

Figur€	Title	Page
No.	Title	No.
1	The Smith-Petersen Mold Vitalium arthropmasty 58 years	6
2	postoperative The Wagner cementless metal-on-metal resurfacing	11
3	New Generation M-o-M Resurfacing Hip Arthroplasty Implants	14
4	Arc of Cover of The Acetabular Component	36
5	Femoral neck fracture in the right hip after M-o-M RHA	49
6	Diagrammatical representation of incorrect and correct implantation of the femoral component	55
7	Notching of the femoral component	56
8	Uncovered reamed bone by the Femoral component	57
9	Loosening of the femoral component	59
10	The three zones described by Amustutz et al to evaluate radiolucency	62
11	Osteonecrosis under failed femoral implants	66
12	Femoral stem fracture 3 years after resurfacing where the stem was cemented	68
13	Late femoral neck fracture after bone necrosis and	70
14	progressive femoral component loosening Head/neck offset ratio on a cross table X-rat.	87
15	Calculating Angle Alpha using MRI scan	88
16	Light microscopy examination of the periprothetic tissue showing the characteristics of immune reaction in metal-on-metal implants	93
17	Trochanteric slip slide approach.	138

18	Anterior Dislocation of the hip by flexion external rotation and adduction.	139
19	Various systems of Pin Centering Guide	141
20	Navigation helps to orient femoral component more accurately	143
21	A-P X-ray showing the ideal position of the femoral component of M-o-M RHA	144
22	Fixation holes on the prepared reamed head.	148
23	Treatment of head cysts and bone defects	150
24	Final steps of head preparation before cementation	154

LIST OF TABLE

Table	Tido	Page
No.	Title	
1	Types of contemporary used resurfacing implants	15
2	The results concerning risk of malignancy after different types of hip arthroplasty in the meta-analysis conducted by Tharani et al	42
3	The results of study conducted by Ziaee et al to evaluate transplacental transfer of Cobalt and Chrome	46
4	Incidence of Thromboembolic complications associated with M-o-M RHA in recent observational studies	48
5	Femoral neck fractures in other observational studies	51
6	Causes of revision of resurfacing hip in the 2009 annual report of the $A0A$	53
7	The incidence of femoral component loosening in recent observational studies	58
8	Criteria in Amustutz et al evaluation system of femoral fixation	62
9	The incidence of dislocation in recent observational studies	105
10	Incidence of other local complications in available observational studies	106
11	Primary diagnosis of M-o-M RHA in AOA 2009 Ann Report	121
12	Comparison between criteria of Chandler Risk Index and SARI	132
13	The superiority of SARI in predicting complications in M-o-M RHA	132
14	Table showing the technical measures practiced by Amustutz et al to promote femoral implant fixation	154

LIST OF ABBREVIATIONS

AVN : Avascular Necrosis

ARDM : Adverse Reaction to Metal Debris

BHR : Birmingham Hip Resurfacing

cI : Confidence Interval

HDP : High Density Polyethylene

HO : Heterotopic Ossification

M-o-M : Metal on Metal

M-o-M RHA : Metal on Metal Resurfacing Hip Arthroplasty

OA : Ostearthrosis

RHA : Resurfacing Hip Arthroplasty

ROM : Range Of Motion

SARI : Surface Arthroplasty Risk Index

THA : Total Hip Arthroplasty

INTRODUCTION

Resurfacing of diseased hip joints attracted orthopedic surgeon in the past. It preceded the use of stemmed arthroplasties.[1] Resurfacing (mold) arthroplasty was implanted by Smith-Petersen 1940s. The poor results and the appearance of total hip stemmed solution with the introduction of polyethylene rapidly replaced the resurfacing arthroplasty.[2]

The resurfacing concept was reintroduced in 1970s with metal on polyethylene implants. It became very popular especially in Europe. But the high failure rate due to osteolysis associated with the high wear rate and the reaction to large wear particles of polyethylene, let this generation of resurfacing fell out in 1980 in favor of Total Hip Arthroplasty (THA).[1, 2]

Offering better performance for young adults with end stage hip osteoarthrosis has been still an ambition to orthopedic surgeons. In 1990s, the improved engineering and manufacturing devices allowed the reintroduction of resurfacing hip arthroplasties using low wear metal on metal bearings. It was not until 1996 that the contemporary implant models have been used with a hybrid fixation technique.[2, 3] The new generation of Metal-on-Metal Resurfacing Hip Arhtroplaty (M-o-M RHA) gathered the advantages of Metal-on-Metal bearings and large diameter hip arthropalsty. Offering stable and painless hip joints that permit the return to preoperative activity level through a relatively bone stock sparing procedure, made resurfacing a very evolving alternative especially after the publication of the medium term results of resurfacing pioneers.[2, 4-7]

Over a short period of time, resurfacings became very popular and the number of resurfacing implants increased to about 10% of all primary hip replacements in countries such as the UK, Australia, and the Netherlands.[4, 8]

In front of the higher incidence of failure in the multicenter series, a decline in the resurfacing was remarked in the Australian registry of AOA from 2006 to 2008. The English registry as well reported this decline.[9-11]

The future of resurfacing depends on the understanding of reported complications and devising concrete measures to reduce them.

The purpose of our study is to review reported complications associated with Metal-on-Metal Resurfacing Hip Arthroplasty and various measures proposed by authors to overcome them.

We will present a comprehensive review of reported complications associated with M-o-M RHA. We will discuss reported risk factors (technical and patient related). Our study will also discuss potential long term complications which are still the subject of debate.

Finally we will show various measures proposed in the literature to overcome reported complications.

AIM OF THE WORK

Discussing complications associated with metal on metal resurfacing hip arthroplasty and measures to overcome them

THE REVIVING OF THE RESURFACING CONSEPT BY THE METAL ON METAL BEARING

Hip resurfacing is a type of hip replacement where the femoral implant caps the femoral head, thus preserving the bone of the proximal femur.

The surgical approach is the same of the conventional hip replacement but with more dissection to allow mobilization and preservation of the femoral head to visualize the acetabulum.

In resurfacing, the capped femoral head articulates either with the acetabular cartilage (Hemiarthroplasty) or with an acetabular component.[1]

The reviving of the resurfacing arthroplasty in 1990s was the result of renovation in the design of the prosthesis, the development of perfectly bearing metal alloys and the understanding of the fluid lubrication and optimal clearance in large diameter femoral component in metal on metal arthroplasty.[2]

History

The use of resurfacing prostheses predates the use of stemmed femoral component.

Back in 1930s-1950s, various materials like ivory, glass and stainless-steel were used.[1]

The first generations of resurfaced hip joints.

Contemporary designs of resurfacing have evolved directly from the original mold arthroplasty introduced by Smith-Petersen in 1948 which was a hemiresurfacing.[12] **Fig.(1)**

The first total resurfacing arthroplasty was developed by Charnley in the early 1950s using a Teflon-on-Teflon bearing. This implant was associated with high rate of early failure. Avascular necrosis was first accused but subsequently the poor wear characteristics of the Teflon were recognized.[13, 14]

Fig.(1): Smith-Peterson Vitallium mold arthroplasty 58 years post-operative.[15]