Sensory, physico-chemical and microbial characteristics of new light mayonnaise formulations

By Mohamed Bahgat Abou-Zeid

B.S. Food Science, Food Science Department, Faculty of Agriculture, Cairo University, 1996

Thesis

Submitted to the Department of Food Science,
Faculty of Agriculture, Cairo University
in Partial Fulfillment of the
Requirements for the
Degree Master of
Food Science

SUPERVISON SHEET

Sensory, physico-chemical and microbial characteristics of new light mayonnaise formulations

By Mohamed Bahgat Abou-Zeid

B.S. Food Science, Food Science Department, Faculty of Agriculture, Cairo University, 1996

Under the supervision of:

Prof. Nagwa M. El-Shimi

Prof. Food Sci., Food Sci. Dept., Fac. Agric., Cairo Univ.

Dr. Wael A. Bazaraa

Associate Prof. Food Sci., Food Sci. Dept., Fac. Agric., Cairo Univ.

DEDICATION

In the memory of my beloved mother, to my father, Mr. Bahgat Abou-Zied, my brother Mr. Ahmed, my wife Hanaa and my lovely daughters Malak and Rawda.

ACKNOWLEDGMENTS

In the name of God most gracious, most merciful, all praise be to God, the Lord of the Universe, without whose bounty I would not have completed this work.

I would like to express my most sincere thanks and appreciation to my parents and my small family for their love, patience, support and encouragement during my studies.

Special thanks is due to my major advisor, Prof., Nagwa M. El-Shimi for her continuous guidance and scientific support throughout performing this work.

I would also like to thank my advisor, Dr. Wael A. Bazaraa for his great help, assistance and friendship. I really appreciate his continuous effort throughout conducting my lab. work, performing statistical analysis and writing the manuscript paper.

My appreciation is also extended to Prof. Abd El-Rhman M. Khalaf-Allah (Dept. Food Sci., Fac. Agric. Cairo Univ.) and Prof. Attef A. Abou Arab (Dept. Food Sci., Fac. Agric. Ain Shams Univ.) for serving as members of my reading committee and for their thoughtful suggestions.

This work would not have been completed without the generous help of Cairo Food Industry "Heinz Egypt" who financially supported this research. Also, the generous help of

the management of Blue Skies Egypt, who spiritually supported me to be able to finish this work.

Last, but not least, I would like to thank Mr. Emad Gad, G.C. HAHN and CO. Lubeck, Germany for providing the stabilizer RR MAYLI 6 and egg yolk powder. I would like to thank Mr. Nabil Soliman and Joss Delves-Broughton, agent of Danisco Company (Beaminster, Dorest, UK) for supplying the microbial strains use this thesis. Also, I would like to thank my dear friend Hisham Abd-El-Monem for helping me in the preparation of my oral presentation. Special thanks is also extended to all my friends in Food Science Department, Cairo University, Heinz Egypt and Blue Skies Egypt.

CONTENTS

LIST OF TABLES	Page ix
LIST OF FIGURES	xiv
1. INTERODUCTION	1
2. REVIEW OF LITERATURE	6
2.1. Ingredients of mayonnaise	6
2.1.1. Oils	6
2.1.2. Egg	9
2.1.3. Acids	10
2.1.4. Salt and Sugar	12
2.1.5. Mustard	13
2.1.6. Preservatives	15
2.2. Fat substitutes (replacers) or stabilizes	17
2.2.1. Characteristics and functionality of some polysaccharides in foods	20
2.2.1.1. Guar and locust bean gum:	20
2.2.1.2. Xanthan gum	21

2.2.1.3. Starch	23
2.3. Application of polysaccharides in light mayonnaise	25
2.4. Mayonnaise stability	27
2.4.1. Microbiological stability	28
2.4.1.1. Difference between home-made and commercial mayonnaise	29
2.4.1.2. Mayonnaise and Salmonellosis	30
2.4.1.3. Mayonnaise and other pathogens	33
2.4.1.4. Microbial spoilage of mayonnaise-based salads	36
2.4.1.5. Injured Microorganisms	38
2.4.2. Chemical stability	41
2.4.2.1. Oxidation	41
2.4.3. Physical stability	44
2.5. Shelf life determination	47
MATERIALS and METHODS	49

	3.1. Materials	49
	3.1.2. Mayonnaise ingredients	49
	3.1.2. Light mayonnaise brands	50
	3.1.3. Bacterial strains	50
	3.1.4. Microbiological media	50
3.	2. Methods:	50
	3.2.1. Production of mayonnaise	50
	3.2.2. Effect of oil type and concentration:	51
	3.2.3. Effect of storage on light mayonnaise quality:	F 0
	3.2.4. Effect of stabilizer type and concentrations	53 53
	3.2.5. Effect of storage on the quality of LM contained different stabilizers	53
	3.2.6. Sensory evaluation	54
	3.2.7. Physico-chemical analysis	54

	3.2.7.1. Apparent viscosity	54
	3.2.7.2. Emulsion stability (ES)	55
	3.2.7.3. Moisture and total solids	55
	3.2.7.4. Total lipids	55
	3.2.7.5. Total carbohydrate	56
	3.2.7.6. Total crude protein	56
	3.2.7.7. Oil quality	56
	3.2.7.7.1. Acid value	56
	3.2.7.7.2. Peroxide value (PV)	57
	3.2.7.8. Total ash and salt content	57
	3.2.7.9. Titratable acidity	58
	3.2.7.10. pH value	58
	3.2.7.11. Water activity (a _w)	58
3	3.2.8. Microbial analysis	
	3.2.8.1. Microbial count	58

3.2.8.1.1. Total viable bacterial count:	59
3.2.8.1.2. Yeast and fungi counts:	59
3.2.8.1.3. Total coliform bacteria:	59
3.2.8.1.4. Enumeration of fecal <i>E. coli</i> :	59
3.2.8.1.5. Lactic acid bacteria count:	59
3.2.8.1.6. Staphylococcus sp. count:	59
3.2.8.1. Detection of <i>Salmonella</i> :	60
3.2.9. Determination of injured cells	60
3.2.10. Statistical analysis	62
4. RESULTS AND DISCUSSION	63
4.1. Effect of oil type and concentration on organoleptic characteristics of light mayonnaise formulations	63
4.2. Effect of storage on the quality of light mayonnaise formulaions	67

4.2.1. Organoleptic characteristic	67
4.2.1.1. Color	67
4.2.1.2. Texture	69
4.2.1.3. Taste	69
4.2.1.4. Overall acceptability	72
4.2.2. Physico-chemical properties:	74
4.2.2.1. Emulsion stability	74
4.2.2.2. Apparent viscosity	77
4.2.2.3. Total solids and moisture content	79
4.2.2.4. Acidity	80
4.2.2.5. pH	84
4.2.2.6. Peroxide value (PV)	86
4.3.2.7. Hydrolytic stability	88

4.2.3. Microbial quality	91
4.3. Effect of stabilizer type and concentration on organoleptic characteristics of light mayonnaise formulations:	92
4.4. Effect of storage on the quality of light mayonnaise formulations containing different stabilizers:	96
4.4.1. Organoleptic characteristic	96
4.4.1.1. Color	96
4.4.1.2. Texture	99
4.4.1.3. Taste	102
4.4.1.4. Overall acceptability	105
4.4.2. Physico-chemical properties:	109
4.4.2.1. Emulsion stability	109
4.4.2.2. Apparent viscosity	112

4.4.2.3. Total solids and moisture content	115
4.4.2.4. Acidity	120
4.4.2.5. pH	120
4.4.2.6. Peroxide value (PV)	123
4.4.2.7. Hydrolytic stability	128
4.4.3. Microbial quality	131
4.5. Injured cells evaluation	132
4.6. A comparative study between the LM and some imported LM brands.	137
5. SUMMARY	139
6. REFERENCES	152
ARABIC SUMMARY	

LIST OF TABLES

Γable No.		Page
1	The minimum allowed oil content in mayonnaise according to various country standards	4
2	The main categories, examples and functional attributes of fat replacers	18
3	Examples of types of fat replacers used in various food categories	19
4	Some important outbreaks involving mayonnaise and tartare sauce	32
5	Traditional mayonnaise (TM) and light mayonnaise (LM) formulations in grams	52
6	Organoleptic characteristics of the prepared light mayonnaise formulations	64
7	Effect of storage on color of LM formulations prepared with corn oil and sunflower oil	68
8	Effect of storage on texture of LM formulations prepared with corn oil and sunflower oil	70
9	Effect of storage on taste of LM	

	formulations prepared with corn oil and sunflower oil	71
10	Effect of storage on overall acceptability of LM formulations prepared with corn oil and sunflower oil	73
11	Changes in emulsion stability of LM prepared using corn oil and sunflower oil during storage at room temperature (24±2°C) and refrigeration temperature (4±2°C)	76
12	Changes in apparent viscosity of LM prepared using corn oil and sunflower oil during storage at room temperature (24±2°C) and refrigerator temperature (4±2°C).	78
13	Changes in total solid of LM prepared using corn oil and sunflower oil during storage at room temperature (24±2°C) and refrigerator temperature (4±2°C)	81
14	Changes in moisture of LM prepared using corn oil sunflower oil during storage room temperature (24±2°C) and refrigerator temperature (4±2°C)	82
15	Changes in acidity of LM prepared using corn oil and sunflower oil during storage at room temperature (24±2°C) and refrigerator	83