

Ain Shams University Faculty of Science Department of Biochemistry

Potential Impact of a Synthesized Nanocomposite Material in Treatment of Different Forms of Liver Injury in Rats

Thesis Submitted for the Award of Ph. D in Biochemistry

Presented By

Basma El-Soudy Abdel- Maksoud El-Agamy

(B. Sc. in Biochemistry, 2004; M. Sc. in Biochemistry, 2009)

Under Supervision of

Prof. Dr. Magdy M. Mohammed

Professor of Biochemistry Faculty of Science Ain Shams University

Dr. Eman Ibrahim Kandil

Assistant Professor of Biochemistry Faculty of Science Ain Shams university

Prof. Dr. Eman I. Abdel-Gawad

Professor of Physiology Department of radioisotopes Atomic Energy Authority

Dr. Sameh Abdel-Hamid Awwad

Lecturer of chemical engineering Military technical collage

التأثير المحتمل لمركب مخلق بحجم النانو في علاج أنواع مختلفة من إصابات الكبد في الجرذان

رسالة مقدمة من بسمة السعودى عبد المقصود العجمى بعد المقصود العجمى بكالوريوس الكيمياء الحيوية (2004) ماجستير العلوم في الكيمياء الحيوية (2009) للحصول على درجة دكتوراة الفلسفة في العلوم في الكيمياء الحيوية تحت إشراف

أ.د./ إيمان اسماعيل عبد الجواد أستاذ الفيسيولوجي قسم النظائر المشعة هبئة الطاقة الذرية أ.د. / مجدى محمود محمد أستاذ الكيمياء الحيوية كلية العلوم جامعة عين شمس

د. / سامح عبدالحميد عواد

مدرس الهندسة الكيميائية الكلية الفنية العسكرية استاذ مساعد الكيمياء الحيوية كلية العلوم جامعة عين شمس

د. / إيمان ابراهيم قنديل

Biography

Name: Basma El-Soudy Abdel-Maksoud El Agamy.

Date and place of birth: 30/12/1983, Cairo.

Date of graduation: 2004.

Degree: M.Sc. Biochemistry, Faculty of science, Ain Shams

University.

Occupation: Assistant lecturer, Biochemistry Department, Faculty of

Science, Ain Shams University.

Supervisors:

Prof.Dr.Magdy Mahmoud Mohammed

Prof. Dr. Eman Ismaeil Abdel-Gawad

Dr. Eman Ibrahim Kandil

Dr. Sameh Abdel-Hamid Awwad

ACKNOWLEDGEMENT

Thanks first and last to **God** as we owe to him for his great care, support, and guidance in every step in our life.

I wish to express my deep thanks to **Prof. Dr. Magdy Mahmoud Mohammed**, Professor of Biochemistry, Biochemistry Department, Faculty of Science, Ain Shams University, for his valuable advices and continuous encouragement.

It gives me a pleasure to express my sincere thanks and appreciation to **Prof. Dr. Eman Ismaiel Abdel-Gawad**, Professor of Physiology, Department of Radioisotopes, Atomic Energy Autherity, for her time effort, continuous encouragement, constructive comments and deep experience, which she offered me in order to push me forward.

Increase thanks to **Dr. Eman Kandil Ibrahim**, Assistant professor of Biochemistry, Biochemistry Department, Faculty of Science, Ain Shams University, for her close supervision, kindness and precious advice during all stages of this work.

I am also deeply indebted to **Dr. Sameh Abdel-Hamid Awwad**, Lecturer of Chemical Engineering, Military technical collage, for his technical assistance and valuable comments.

A special word to thank **my husband** for his continuous encouragement. Dedication to the **spirit of my parents** who spent their lives for giving us happiness, kindness and support. God have mercy on them and bring us together soon.

List of Abbreviations

8-OHdG 8-Hydroxy deoxy -guanosine

ADH Alcohol dehydrogenase

AFP Alpha fetoprotein
ALD Alcoholic liver disease
ALT Alanine aminotransferase

Apaf-1 Apoptosis protease activity factor-1 **BTCP** Biphasic Tricalcium phosphate

CAT Catalase

CC14 Carbon tetrachloride

Cf Calforium

CNFs CNFs carbon nanofibers

CNTs Carbon nanotubes
CP Calcium phosphate

Cs Cesium

CT X-ray computed tomography
CTL Cytotoxic T-lymphocytes

Cu/Zn SOD Cupper/Zinc superoxide dismutase

DENDiethylnitrosamine**ECM**Extracellular matrix**ER**Endoplasmic reticulum

GGT Gamma glutamate transferase

GK Glucose kinase

GLUT-1 Glucose transporter-1
GPx Glutathione peroxidase
GSH Reduced glutathione
GSNO S-nitroso-glutathione

H-3 Titanium

HAV Hepatitis A Virus **HBV** Hepatitis B Virus

HCC Hepatocellular carcinoma

HCV Hepatitis C Virus
HDV Hepatitis D Virus
HEV Hepatitis D Virus
HFV Hepatitis F Virus

HGF Hepatocyte growth factor

HGV
Hepatitis G Virus
HSCs
Hepatic Stellate cells
HSP
Heat shock protein
HSR
Heat shock response

I Iodine

IFN-γ Interferon-γ

IkB Inhibitor of nuclear factor kB

IL Interleukin

iNO Nitric oxide synthase

Ir Iridium

KC Kupffer cells

LDL Low density lipoprotein
LET Linear energy transfer
LETs Liver function tests
LPO Lipid peroxxidation
MDA Malondialdehyde

Mn SOD Manganese superoxide dismutase

MT-MMPs Membrane -type matrix metalloproteinases

NAFLD Non-alcoholic fatty liver disease

Nano-TCP Nano-ticalcium phosphate

NFKB Nunclear factor K B
NK Natural killer cells
NKT Natural killer T cells

NO Nitric oxide
NPs Nanoparticles
PB Phenobarbital

Pb Lead

PCD Programmed cell death

PDGF Platelet –derived growth factor

PGA Poly glycolic acid PLA Polylactic acid

PLGA Poly (D,L-Lactid-coglycolid)

Pu Putonium
QD Quantum dot
Ra Radium

RBE Reactive biological effectiveness

ROS Reactive oxygen species
SEC Sinosiuodal endothelial cells

SH- Sulphydryl groupSOD Superoxide dismutaseSP1 Signal specificity Protein

Sr Stronium

STM Scanning tunnel microscope

TCP Tricalcium phosphate

TEMTransmission electron microscopeTGF-β1Transforming growth factor-β1

TIMP Tissue inhibitor of metalloproteinase

TNF Tumor necrosis factor

TNFR-1 Tumor necrosis factor receptor-1

U Uranium

XRD X-ray diffraction

List of Tables

Page

Table (3.1)	Analysis of DNA fragmentation results in normal control, nano-TCP, DEN and DEN treated groups.	111
Table (3.2)	Therapeutic effect nano-TCP on hepatic MDA concentration as well as hepatic SOD and GPx activities in different studied groups, compared to normal control.	113
Table (3.3)	Therapeutic effect of nano-TCP on hepatic IL-2, TNF- α and IFN- γ concentrations in different studied groups, compared to normal control.	116
Table (3.4)	Therapeutic effect of nano-TCP on hepatic HSP-70, MMP-9 and caspase-3 concentrations in different studied groups, compared to normal control.	118
Table (3.5)	Therapeutic effect of nano- TCP on hepatic ALT and γGT activities in different studied groups, compared to normal control.	121
Table (3.6)	Percentage of hepatotherapy of nano-TCP in relation to liver parameters in rats with DEN-induced carcinogenesis.	123
Table (3.7)	The histopathological alterations in liver tissues of DEN groups.	135
Table (3.8)	Analysis of DNA fragmentation results in control and lead nitrate groups.	137
Table (3.9)	Therapeutic effect nano-TCP on hepatic MDA concentration, SOD and GPx activities in different studied groups, compared to normal control.	139
Table (3.10)	Therapeutic effect of nano-TCP on hepatic IL-2, TNF- α and IFN- γ concentrations in different studied groups, compared to normal control.	141
Table (3.11)	Therapeutic effect of nano-TCP on hepatic HSP-70, MMP-9 and caspase-3 concentrations in different studied groups, compared to normal control.	143
Table (3.12)	Therapeutic effect of nano-TCP on hepatic ALT and γGT	147

	activities in different studied groups, compared to normal control.	
Table (3.13)	Percentage of hepatotherapy of nano-TCP in relation to liver parameters in rats with lead-induced toxicity.	149
Table (3.14)	Histopathological alterations in liver tissue of lead nitrate groups.	156
Table (3.15)	Analysis of DNA fragmentation results in different irradiation groups.	159
Table (3.16)	Therapeutic effect of nano-TCP on hepatic MDA concentration, SOD and GPx activities in different studied groups, compared to normal control	161
Table (3.17)	Therapeutic effect of nano-TCP on hepatic IL-2, TNF-α and IFN-γ concentrations in different irradiated groups, compared to normal control group	165
Table (3.18)	Therapeutic effect of nano-TCP on hepatic HSP-70, MMP-9, caspase-3 concentrations in different irradiated groups, compared to normal control group.	169
Table (3.19)	Therapeutic effect of nano-TCP on hepatic ALT and γ -GT in different irradiated groups, compared to normal control group.	173
Table (3.20)	Percentage of hepatotherpy of nano-TCP in relation to liver parameters in rats exposed to different dose levels of γ -irradiation.	176
Table (3.21)	Percentage of hepatotherpy of nano-TCP in relation to liver parameters in different models of liver injury.	177
Table (3.22)	Histopathological alterations in different irradiation groups.	202

List of Figures

Page

Fig (1.1)	Size scale and examples of micro- and nanocomponents.	6
Fig (2.1)	Flow chart for the preparation of nanocomposites calcium phosphates prepared by polymeric matrix route.	63
Fig (2.2)	TEM micrograph analysis of nano synthesized composite calcium phosphates materials calcined at 1000°C for 24 h with its diffraction pattern.	64
Fig (2.3)	Standard curve for MDA.	76
Fig (2.4)	Standard curve of SOD activity.	82
Fig (2.5)	Standard curve of MMP-9.	96
Fig (2.6)	Standard curve of caspase-3.	99
Fig (3.1)	Photomicrograph of liver section from lead-intoxicated rat.	105
Fig (3.2)	Photomicrograph of liver section from lead-intoxicated rat.	105
Fig (3.3)	Photomicrograph of liver section from lead- intoxicated rat.	106
Fig (3.4)	Photo micrograph of liver section from nano-TCP (150 mg/kg b.w.) treated rat after lead intoxication.	106
Fig (3.5)	Photomicrograph of liver section from nano-TCP (100 mg/kg b.w. three times) treated rat after lead intoxication.	107
Fig (3.6)	DNA electrophoresis in the studied groups.	108
Fig (3.7)	The mean± SE of liver MDA level in the studied groups.	112
Fig (3.8)	The mean ±SE of liver SOD and GPx activities in the studied groups.	112

Fig (3.9)	The mean $\pm SE$ of liver IL-2, TNF- α and IFN- γ levels in the studied groups.	115
Fig (3.10)	The mean ±SE of HSP-70 concentration in the studied groups.	118
Fig (3.11)	The mean \pm SE of MMP-9 concentration in the studied groups.	118
Fig (3.12)	The mean± SE of caspase-3 concentration in the studied groups.	119
Fig (3.13)	The mean± SE of liver GPT and GGT activities in the studied groups.	122
Fig (3.14)	Correlation coefficient between caspase-3 and IFN-γ concentrations in DEN-intoxicated group.	124
Fig (3.15)	Correlation coefficient between caspase-3 and HSP-70 concentrations in DEN-intoxicated group.	124
Fig (3.16)	Correlation coefficient between HSP-70 and TNF- α concentrations in nano-TCP treated rats after DEN-intoxication.	125
Fig (3.17)	Photomicrograph of liver section of normal rat.	128
Fig (3.18)	Photomicrograph of liver section from nano-TCP treated group.	128
Fig (3.19)	Photomicrograph of liver section from DEN-intoxicated group.	129
Fig (3.20)	Photomicrograph of liver section from DEN-intoxicated group.	129
Fig (3.21)	Photomicrograph of liver section from DEN-intoxicated group.	130
Fig (3.22)	Photomicrograph of liver section from DEN-intoxicated group.	130
Fig (3.23)	Photomicrograph of liver section from DEN-intoxicated group.	131
Fig (3.24)	Photomicrograph of liver section from DEN-intoxicated group.	131
Fig (3.25)	Photomicrograph of liver section from DEN-intoxicated group.	132
Fig (3.26)	Photomicrograph of liver section from DEN-intoxicated group.	132

Fig (3.27)	Photomicrograph of liver section from DEN-intoxicated group.	133
Fig (3.28)	Photomicrograph of liver section from nano-TCP treated rat after DEN-induced carcinogenesis.	133
Fig (3.29)	Photomicrograph of liver section of nano-TCP treated rat after DEN-induced carcinogenesis.	134
Fig (3.30)	Photomicrograph of liver section of nano-TCP treated rat after DEN-induced carcinogenesis.	134
Fig (3.31)	Photomicrograph of liver section of nano-TCP treated rat after DEN-induced carcinogenesis.	135
Fig (3.32)	DNA electrophoresis in liver tissue of lead nitrate groups.	136
Fig (3.33)	The mean± SE of liver MDA level in normal control and lead nitrate groups.	140
Fig (3.34)	The mean± SE of liver SOD and GPx activities in normal control and lead nitrate groups	140
Fig (3.35)	The mean± SE of liver IL-2, TNF-α and IFN-γ levels in normal control and lead nitrate groups.	143
Fig (3.36)	The mean \pm SE of liver HSP-70 level in normal control and lead nitrate groups.	146
Fig (3.37)	The mean \pm SE of liver MMP-9 level in normal control and lead nitrate groups.	146
Fig (3.38)	The mean \pm SE of liver caspase-3 concentration in normal control and lead nitrate groups	147
Fig (3.39)	The mean± SE of liver ALT and GGT activities in control and lead nitrate groups.	150
Fig (3.40)	Correlation coefficient between caspase-3 and MMP-9 concentrations in lead-intoxicated group	152
Fig (3.41)	Correlation coefficient between caspase-3 and IL-2 concentrations in nano-TCP treated rats after lead-intoxication.	153

	·	
Fig (3.42)	Photomicrograph from liver section of lead-intoxicated group.	156
Fig (3.43)	Photomicrograph of liver section from lead-intoxicated group.	156
Fig (3.44)	Photomicrograph of liver section from lead-intoxicated group.	157
Fig (3.45)	Photomicrograph of liver section of lead-intoxicated group.	157
Fig (3.46)	Photomicrograph of liver section of nano-TCP treated rat after lead intoxication.	158
Fig (3.47)	Photomicrograph of liver section of nano-TCP treated rat after lead intoxication.	158
Fig (3.48)	Photomicrograph of liver section of nano-TCP treated rat after lead intoxication.	159
Fig (3.49)	DNA electrophoresis in different irradiated groups	161
Fig (3.50)	The mean± SE of liver MDA concentration in normal control and different irradiated groups	166
Fig (3.51)	The mean \pm SE of liver SOD activity in normal control and different irradiated groups.	166
Fig (3.52)	The mean± SE of liver GPx activity in normal control and different irradiated groups.	167
Fig (3.53)	The mean ± SE of liver IL-2 level in normal control and different irradiated groups	170
Fig (3.54)	The mean± SE of liver TNF-α level in normal control and different irradiated groups.	170
Fig (3.55)	The mean ±SE of liver IFN-γ level in normal control and different irradiated groups	171
Fig (3.56)	The mean \pm SE of HSP-70 level in normal control and different irradiated groups.	174
Fig (3.57)	The mean \pm SE of MMP-9 level in normal control and different irradiated groups.	174

Fig (3.58)	The mean \pm SE of caspase-3 concentration in normal control and different irradiated groups.	175
Fig (3.59)	The mean ±SE of ALT and GGT activities in normal control and different irradiated groups.	178
Fig (3.60)	Correlation coefficient between TNF- α and IL-2 concentrations in irradiated rats at 6 Gy	180
Fig (3.61)	Correlation coefficient between TNF-α and IL-2 concentrations in nano-TCP treated rats after irradiation at 6 Gy.	180
Fig (3.62)	Correlation coefficient between HSP-70 and MMP-9 concentrations in nano-TCP treated rats after irradiation at 6 Gy.	181
Fig (3.63)	Correlation coefficient between SOD activity and IL-2 concentration in irradiated rats at 8 Gy.	181
Fig (3.64)	Correlation coefficient between SOD activity and TNF- α concentration in irradiated rats at 8 Gy.	182
Fig (3.65)	Correlation coefficient between SOD activity and IFN-γ concentration in irradiated rats at 8 Gy	182
Fig (3.66)	Correlation coefficient between TNF-α and IFN-γ concentrations in irradiated rats at 8 Gy	183
Fig (3.67)	Correlation coefficient between TNF-α and HSP-70 concentrations in irradiated rats at 8 Gy	183
Fig (3.68)	Correlation coefficient between TNF- α and IL-2 concentrations in irradiated rats at 8 Gy	184
Fig (3.69)	Correlation coefficient between HP-70 and IL-2 concentrations in irradiated rats at 8 Gy	184
Fig (3.70)	Correlation coefficient between TNF-α and caspase-3 concentrations in irradiated rats at 8 Gy	185
Fig (3.71)	Correlation coefficient between HSP-70 and IFN-γ concentrations in irradiated rats at 8 Gy	185

Fig (3.72)	Correlation coefficient between HSP-70 and caspase-3 concentrations in irradiated rats at 8 Gy	186
Fig (3.73)	Correlation coefficient between SOD activity and IL-2 concentration in nano-TCP treated rats following irradiation at 8 Gy	186
Fig (3.74)	Correlation coefficient between TNF-α and MMP-9 concentrations in nano-TCP treated rats following irradiation at 8 Gy	187
Fig (3.75)	Correlation coefficient between HSP-70 and MMP-9 concentrations in nano-TCP treated rats following irradiation at 8 Gy	187
Fig(3.76)	Correlation coefficient between TNF-α concentration and GGT activity in irradiated rats at 10 Gy.	188
Fig (3.77)	Correlation coefficient between GGT activity and IFN-γ concentration in irradiated rats at 10 Gy.	188
Fig (3.78)	Correlation coefficient between HSP-70 and IL-2 concentrations in irradiated rats at 10 Gy.	189
Fig (3.79)	Correlation coefficient between TNF- α and IL-2 concentrations in irradiated rats at 10 Gy.	189
Fig (3.80)	Correlation coefficient between TNF- α and IFN- γ concentrations in irradiated rats at 10 Gy.	190
Fig (3.81)	Correlation coefficient between TNF- α and HSP-70 concentrations in irradiated rats at 10 Gy.	190
Fig (3.82)	Correlation coefficient between TNF- α and caspase-3 concentrations in irradiated rats at 10 Gy.	191
Fig (3.83)	Correlation coefficient between HSP-70 and IFN-γ concentrations in irradiated rats at 10 Gy.	191
Fig (3.84)	Correlation coefficient between MMP-9 and IFN-γ concentrations in irradiated rats at 10 Gy.	192