

شبكة المعلومات الجامعية

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

شبكة المعلومات الجامعية

جامعة عين شمس

التوثيق الالكتروني والميكروفيلم

قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأفلام قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأفلام بعيدا عن الغبار في درجة حرارة من ١٥-٥٠ مئوية ورطوبة نسبية من ٢٠-٠٠% To be Kept away from Dust in Dry Cool place of 15-25- c and relative humidity 20-40%

بعض الوثائـــق الإصليــة تالفــة

بالرسالة صفحات لم ترد بالإصل

RELATIONSHIP BETWEEN SOME MINERALS AND RUMEN ACTIVITY

Sord

BY

MOHAMED EZZAT MOHAMED AGOUR

B.Sc. (Agric.) 1990

Tanta University

THESIS

Submitted in Partial Fulfillment of
The Requirements for The Degree of
MASTER OF SCIENCE

IN

(Animal Production)

Animal Production Department

Faculty of Agriculture

Kafr El-Sheikh,

Tanta University

APPROVAL SHEET

RELATIONSHIP BETWEEN SOME MINERALS AND RUMEN ACTIVITY

BY

Mohamed Ezzat Mohamed Agour

This Thesis has been approved by:

Prof.Dr. Borhami E. Borhami
Prof.of Animal Nutrition
Alexandria University

Prof.Dr. Said A. Mahmoud
Prof.of Animal Nutrition
Tanta University

Prof.Dr. Gouda S.EL-Santiel
Prof.of Animal Nutrition
Tanta University

Prof.Dr. Mohamed K.Mohsen
Prof.of Animal Nutrition and
Head of Dept.of Animal Production.
Tanta University

(Barhami)

(G.El-Sanlel)

(ll. K. Mohsen)

Date of Examination: //1997

ADVISOR'S COMMITTEE

PROF. Dr. MOHAMED K. MOHSEN

Prof. of Animal Nutrition and Head of Animal Production Department, Fac. of Agric., Kafr El-Sheikh, Tanta University.

PROF. Dr. GOUDA S. EL-SANTIEL

Prof. of Animal Nutrition

Fac. of Agric., Kafr El-Sheikh,

Tanta University.

Dr. EL-SAYED M. ABD EL-RAOUF

Associate Prof. of Animal Nutrition
Fac. of Agric., Kafr El-Sheikh,
Tanta University.

CONTENTS

	ı ag
I- INTRODUCTION	1
II- REVIEW OF LITERATURE	2
1- Mineral concentration in blood plasma	2
1-1- Macro Minerals	2
1-1-1- Calcium and phosphorus	2
1-1-2- Magnesium	3
1-1-3- Sodium and potassium	4
1-2- Micro Minerals	5
1-2-1- Copper	5
1-2-2- Zinc	5
1-2-3- Manganese	6
1-2-4- Iron	6
2- Minerals Utilization	7
2-1-Macro Minerals	7
2-1-1- Calcium and phosphorus	7
2-1-2- Magnesium	8
2-1-3- Sodium and potassium	9
2-2- Micro Minerals	10
2-2-1- Copper	10
2-2-2- Zinc	11
2-2-3- Manganese	11
2-2-4- Iron	12
3- The effect of minerals on gain, performance and feed	
efficiency.	12
4- Methods of providing minerals to the animals.	15
4-1- Indirect methods	16
4-2- Direct methods	17
4-2-1- Physical form of mineral supplements.	17
4-2-1-1- Minerals in drinking water.	18
4-2-1-2- Oral drenching or shot-gun.	18
4-2-1-3- Injection.	19
4-2-1-4- Salt mineral mixture	19
4-2-1-5- Mineral briquettes (Blocks).	20
5- Factors influencing mineral requirements.	20

	Page
III- MATERIAL AND METHODS	22
1- Feeding Trial	22
1-1- Experimental animals	22
1-2- Rations.	23
2- Digestion Trials	26
2-1- Metabolism cages	26
2-2- Feed sample	27
2-3- Feces and urine samples	27
2-4- Rumen fluid	27
2-5- Blood samples	28
3- Chemical analysis	28
4- Statistical analysis	29
IV- RESULTS AND DISCUSSION	30
1- Effect of mineral supplementations on the digestibility of	
fed ration.	30
1-1- Digestion coefficients of dry matter	30
1-2- Digestion coefficients of organic matter	31
1-3- Digestion coefficients of crude protein	32
1-4- Digestion coefficients of crude fiber	33
1-5- Digestion coefficients of ether extract	33
1-6- Digestion coefficients of nitrogen free extract	34
1-7- Feeding value	36
1-8- Nitrogen balance	37
1-9- Rumen activity	39
2- Effect of minerals on performance of growing lambs.	40
2-1- Growth rate	40
2-2- Feed intake and feed efficiency	43
3- Minerals concentration in blood plasma	44
3-1- Macro Minerals.	44
3-1-1- Calcium	44
3-1-2- Phosphorus	44
3-1-3- Sodium and potassium.	45
3-1-4- Magnesium.	46
3-2- Micro Minerals.	46

	Page
3-2-1- Copper	46
3-2-2- Zinc.	47
3-2-3- Manganese	48
3-2-4- Iron	48
4- Feed-intake and net retention for lambs and bucks:	49
4-1-Macro Minerals.	49
4-1-1- Calcium	49
4-1-2- Phosphorus	51
4-1-3- Sodium and potassium.	51
4-1-4- Magnesium.	53
4-2- Micro Minerals	53
4-2-1- Copper	53
4-2-2- Zinc.	55
4-2-3- Manganese	55
4-2-4- Iron	57
V- CONCLUSION	
VI- SUMMARY	59
VII- REFERENCES	63
VIII- ARABIC SUMMARY	
LIST OF TABLES	
APPENDIX	

List of Tables

Tables		Page
No.		Ü
1	Mineral requirements of growing sheep and goats (NRC, 1998).	21
2	Formulation of different ingredients used for feeding	
	growing Lambs and Bucks in digestibility trials.	24
3	The chemical composition (%) and mineral concentration of	
	concentrate mixture, rice straw, wheat bran, Biomex and	
	Acrovit use in feeding animals.	25
4	Digestion coefficients of dry matter in Lambs and Bucks.	30
5	Digestion coefficients of organic matter in Lambs and Bucks.	31
6	Digestion coefficients of crude protein in Lambs and Bucks	32
7	Digestion coefficients of crude fiber in Lambs and Bucks.	33
8	Digestion coefficients of ether extract in sheep and Lambs.	34
9	Digestion coefficients of nitrogen free extra in Lambs and Bucks.	35
10	Average values of TDN, SV and DCP.	37
11	Average of absolute and relative values of nitrogen balance for	
	sheep and goats fed ration containing different mineral mixtures.	38
12	Average values of pH, NH ₃ -N and total VFA's in rumen	
	liquor of Lambs and Bucks fed rations containing different	
	mineral mixtures.	39
13	Average daily live weight gain and relative daily gain for	
	growing Lambs fed different mineral mixtures.	41
14	Average value of dry matter intake, feed conversion and	42
	economical efficiency for growing Lambs fed different mineral	
	mixtures.	
15	Mineral concentration in blood plasma.	45
16	Feed intake and net retention (% of intake) of macro	50
	elements for Lambs and Bucks.	
17	Feed intake and net retention (% of intake) of macro	52
	elements for Lambs and Bucks.	
18	Feed intake and net retention (% of intake) of micro	54
	elements for Lambs and Bucks.	
19	Feed intake and net retention (% of intake) of micro	56
	elements for Lambs and Bucks.	

ACKNOWLEDGMENT

In actual fact the prayerful thanks are due to our merciful GOD. My special gratitude to professor Dr. M.K. Mohsen Professor of Animal Nutrition, and Head of Animal Production, Department, Faculty of Agriculture Kafr El-Sheikh, Tanta University for kind supervision, continuous support advising and valuable assistance throughout the course of the study. His constructive suggestions criticisms and comment to revising the manuscript are deeply appreciated.

Deep gratitude and special thanks for Professor Dr. G.S.El-Santiel Professor of Animal Nutrition Department of Animal Production, Faculty of Agriculture, Kafr El-Sehikh, Tanta University for his supervision, continuous help, advice throughout this work and continuous encouragement's.

I wish to express my guidance and appreciation to Dr.S.M.Abd El-Raouf Associate Professor of Animal Nutrition. Department of Animal Production, Faculty of Agriculture, Kafr El-Sheikh, Tanta University for his close supervision and his appreciable help and valuable guidance throughout the course of this study and his help in the statistical analysis.

Thanks also are extended to all the staff of the Department of Animal Production, Faculty of Agriculture, Kafr El-Sheikh, Tanta University for their great help and sincere CO-operation.

At last, my deep appreciates to my parents for their continuous encouragement, patience and support.

INTRODUCTION

Although minerals are needed only in very small amount in animals feeds, they are very essential for normal health condition, production and metabolic functions of the body.

Mineral deficiencies or imbalances in soil and forage have long been held responsible for low production and reproduction problems of animals. Significant physiological relationships exist among dietary intakes of minerals and the corresponding levels of minerals in the blood plasma.

Administration of minerals for animals by drinking water, mineral lick, mixtures, oral drenching or shot-gun and injection are considered as the most economical methods of supplementation while mineral supplement which incorporated into the fed rations, generally ensures that animals are receiving the required mineral.

The objective of the present study was to through some lights on the effect of adding different sources of mineral mixturs to the ration of on minerals balance, mineral concentration in blood plasma, body weight gain, digestion coefficient of the nutrients and rumen activity of lambs and bucks.

REVIEW OF LITERATURE

1- Mineral concentration in blood plasma

1.1- Macro Minerals.

1.1.1- Calcium and phosphorous

The normal level of Ca in plasma of goats ranged from 10.65 to 11.0 mg/100 ml (Papenheimer et al. 1962). Uenderwood (1966) and Stewart (1990) reported that the normal level of Ca and P in serum of sheep ranged from 4.5-6.5 mg/100 ml, respectively. McDowell and Conrad (1977) stated that the critical level in serum of cattle for Ca<8 and P<4.5 mg/100 ml.

With the supplemented basal diets of growing lambs with 1.79,3.53 or 4.67 gm Ca/Kg DM, plasma Ca concentration was higher for female lambs (2.51 mmol/litre) than the male ones (2.33 mmol/litre) and increased linearly with increasing dietary Ca concentration in diet from 2.31 to 2.52 mmol/ litre (Field et al.1985). Gomaa et al. (1993b) showed that plasma Ca and P concentration of goats ranged from 8.97 to 11.04 and 5.73 to 7.55 mg/100 ml when dietary Ca and P intake ranged from 7.3 to 11.4 and 6 to 10 g/day, respectively. Call et al.(1978), feeding Hereford heifers a phosphorus-deficient diet (.14% "as fed" basis) or high P diet (.14% plus .22% from supplementation, total .36%), they found after 10 days on trial, the phosphorous concentrations in both whole blood (16.0 mg%) and blood serum (8.1 mg%) in the P-cattle were considerably lower than the respective concentrations (19.0 mg%, 11.7 mg%) in the P+ cattle. However, approximately 9 months later, the differences had nearly disappeared, the