A Study of Human Papilloma Virus (HPV) Infection of the Cervix in Egyptian Females by Cytology, Histopathology, Colposcopy and HPV Genotyping

Thesis

Submitted in Partial Fulfillment for MD Degree "Obstetrics & Gynecology"

By

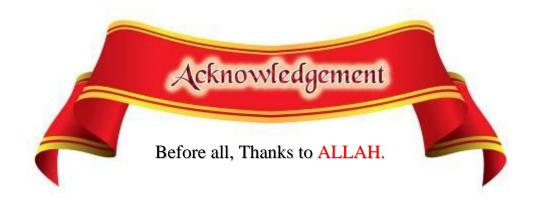
Ahmed Farid El Shazly

M.B.B.Ch., M.Sc. Assistant lecturer of Obstetrics & Gynaecology M.U.S.T. University

Under Supervision of

Prof. Mona Abdel Badeeh Nayel

Professor of Obstetrics & Gynaecology Faculty of Medicine – Cairo University


Prof. Olfat Gamil Shaker

Professor of Medical Biochemistry Faculty of Medicine – Cairo University

Prof. Hala Naguib Hosni

Professor of Pathology Faculty of Medicine – Cairo University

> Faculty of Medicine Cairo University 2014

I would like to express my profound gratitude to Prof/ Mona Abdel Badeeh Nayel, Professor of Obstetrics and Gynecology, Faculty of Medicine, Cairo University for her support all through the whole work and for dedicating much of her precious time to accomplish this work.

I am also grateful to Prof/ Olfat Gamil Shaker Professor of Medical Biochemistry, Faculty of Medicine cairo University and Prof. Hala Naguib Hosni Professor of Pathology Faculty of Medicine Cairo University for their unique effort, considerable help, assistance and knowledge they offered me throughout the performance of this work.

All my thanks and gratitude to my patients for giving me their help, hoping them a good health.

Last but not the least I would like to express my deep thanks to every member in my family especially my father, my mother, my sisters, and my wife for their great support all the time and helping me from the A, B, C to the M.D.

Abstract

In this study the golden standard test for detection of HPV was considered PCR-ISH tissue. We found PCR-ISH tissue was positive in 16 cases (53.33%) and 14 cases (46.6%) were negative.

The age of studied group ranged from (20-50) years with mean and standard deviation (SD) 32.77±7.99 while the duration of marriage in 29 cases (0.5-30) years, as one was divorced, with mean and SD 12.95±8.26. Comparing the result of pap smear, histopathology, colposcopy and PCR swap in diagnosis of HPV with the golden standard test ISH PCR tissue, the sensitivity were 87.5%, 100%, 62.5% and 56,2% respectively but the specificity were 78.6%, 42.9%, 28.6% and 100% respectively

This study aimed to evaluate the different methods of diagnosis of cervical HPV infection in Egyptian females by cytology, histopathology, colposcopy and HPV genotyping. This study included 30 patient with either abnormal pap smears prior to colposcopic examination (10 cases) and abnormal T Z zone on colposcopic examination (20 cases). We considered Pap smear result suggestive of the presence of HPV infection when we found (ASUS, LSIL, HSIL, koliocytic atypia).

Keyword: HPV-PCR- Histopathology- Cytology

List of Contents

Title	Page No.
Introduction	1
Aim of the work	4
Review of literature	
■ Histology of the normal cervix	5
 The epidemiology and pathovirology of ge papillomavirus infection 	
■ Diagnosis of hpv	26
 Prevalence of human papilloma virus infe 	ection in egypt81
 Cervical cancer screening in resource-poor 	or settings85
Patients and methods	92
Results	98
Discussion	120
Sumarry	129
Concolusion and recommendation	132
References	133
Arabic Summary	

List of Tables

Table No.	Title	Page No.
Table (1):	Human papillomavirus gene	functions11
Table (2):	Human papillomavirus manifestationsa.	types and clinical 25
Table (3):	Bethesda classification of cerv	vical cytology35
Table (4):	Diagnostic criteria for squa	amous abnormalities in38
Table (5):	Acetowhite changes in colposcopic lesions	low- and high-grade60
Table (6):	Reid Colposcopic Index	62
Table (7):	Age and marital status of the	studied group98
Table (8):	Risk factors in the studied gre	oup99
Table (9):	Association between age and group.	PCR-ISH in the studied 99
Table (10):	Association between parity studied group.	and PCR-ISH in the
Table (11):	Association between risk fact studied group	fors and PCR-ISH in the
Table (12):	Distribution of the positive ar	nd negative result of Pap
Table (13):	Association between PCR- IS studied group	H and Pap smear in the
Table (14):	Association between Pap suppositive cases n= 17) of the st	mear and ISH PCR in udied group105
Table (15):	Distribution of the result of h	nistopathology in studied106
Table (16):	Association between PCR- IS the studied group	H and histopathology in107
Table (17):	Association between histopat positive cases n= 24) of the st	chology and PCR-ISH in udied group109
Table (18):	Association between ISH PC studied group	R and colposcopy in the

List of Tables (Cont...)

Table No.	Title	Page No.
Table (19):	Association between PCR-in the studied group	ISH tissue and PCR swap
Table (20):	_	vity, specificity, PPV and the studied group119

List of Figures

Fig. No.	Title	Page No.	
Figure (1):	Different locations of the tra	insformation zone and the	
C	squamocolumnar junction du	ring a woman's lifetime	9
Figure (2):			
Figure (3):	Molecular mechanisms of on	cogenic HPV infection	. 16
Figure (4):	*	f cervical cancer	.18
Figure (5):	Schematic diagram to show	the disease continuum of	
	cervical neoplasia developme	nt following HPV infection	.47
Figure (6):	Colpophotograph of a norm	al cervix. 5% acetic acid	
	has been applied		.55
Figure (7):	Colpophotograph of a low-gr	ade lesion	. 57
Figure (8):	Colpophotograph of a high-g	rade lesion	. 60
Figure (9):	A Welch allyn video-colposco	ppe	.80
Figure (10):	Distribution of Pap smear re	esult1	101
Figure (11):	——————————————————————————————————————	ear and PCR-ISH1	102
Figure (12):	Cervical cytology with o	ervical squamous cells	
	showing perinuclear halo	1	103
Figure (13):	Cervical cytology showing at	ypical squamous cell1	103
Figure (14):	Cervical cytology showing	• •	
	showing nuclear enlargemen	nt and hyperchromasia1	104
Figure (15):	Association between abnorm	-	
		studied group1	105
Figure (16):	Distribution the result of	f histopathology in the	
, ,			106
Figure (17):	Association between PCR- I		
, ,	8 1		
Figure (18):	9	1, with koilocytosis1	108
Figure (19):	Cervical tissue showing Cl	_	
	nuclear pleomorphism, nu	e	
	hyperchromasia in all th		
			108
Figure (20):	Cervical tissue showing l		
	cervical epithelium showin		
	enlargement, irregularity of		
, ,	*	1	109
Figure (21):	Association between histopa		
		tudied group1	110
Figure (22):	Association between ISH Po		
	studied group		111

List of Figures (Cont...)

Fig. No.	Title	Page No.	
Figure (23):	A case of acetowhite area at th		
	the cervix Cytology result		
	perinuclear halo but negative re	sult of PCR-ISH1	12
Figure (24):	The same case show No iodine u	ptake at the ant lip of	
	cervix after application of lugol's	s iodine1	12
Figure (25):	This case show dense acetowhite	-	
	cervix Negative result of cytolo		
	histopathology result CIN I		13
Figure (26):	The same case show no iodine u		
	cervix after application of lugol's	s iodine1	13
Figure (27):	This case show dense acetowhi	ite area at ant lip of	
	cervix		.14
Figure (28):	The same case show no i	odine uptake after	
	application of lugol's iodine	1	14
Figure (29):	This case show acetowhite area		
	Also showPositive result of PC	R-ISH, cytology show	
	perinuclear halo and histopatho	ology result show CIN	
	I+koliocytosis		15
Figure (30):	The same case show no i	odine uptake after	
	application of lugol's iodine	1	15
Figure (31):	Association between PCR-ISH a	and PCR swap in the	
	studied group	1	16
Figure (32):	A photomicrograph of the cervi	ix from acase of CIN	
	positive for HPV by PCR in situ	hybridization1	17
Figure (33):	A photomicrograph of the cervix	from positive case of	
	HPV by PCR in situ hybridizatio	on1	18
Figure (34):	Aphotomicrography of the cervi	x from negative case	
	of HPV by PCR in situ hybridiza	tion1	18
Figure (35):	Diagnostic indices (sensitivity,	specificity, PPV and	
	NPV) of different methods in the	e studied group1	19

List of Abbreviations

Abb. Meaning

AIS Adenocarcinoma in situ

ASIR Age Standarized Incidence Rate

AHRQ Agency for Healthcare Research and Quality

ASCCP American Society for Colposcopy and Cervical Pathology

ALTS ASCUS/LSIL Triage Study

AGC Atypical glandular cells
ASC Atypical squamous cells

ASC-H Atypical squamous cells can not exclude high grade **ASC-US** Atypical squamous cells of undetermined significance

bp Base pairs

CIS Carcinoma in situ

CIN Cervical intraepithelial neoplasia

CGB Colposcopic Guided Biobsy

CMV Cytomegalovirus

DNA Deoxy ribonucleic acid

DES Diethylstilbestrol

DB Dot blot hybridization
ECC Endocervical curettage
EA Epithelial Abnormalities

FH Filter hybridization

FAD Flavin Adenine DinucleotideFDA Food and Drug ApprovedH&E Hematoxylin and Eosin

HSIL High grade squamous intraepithelial lesion

HR High- risk

HHV Human herpesvirus

HIV Human immunodeficiency virus

HPV Human papilloma virus

List of Abbreviations (Cont...)

Abb.	Meaning

HC Hybrid capture

ISH In situ hybridization LBC Liquid base cytology

LSIL Low grade squamous intraepithelial lesion

LR Low- risk

LGT Lower genital tract

NPV Negative predictive Value

NADH Nicotinamide Adenine Dinucleotide
OCT Optical Coherence Tomography

ODS Optical Detection System

Pap smear Papanicolaou smear

PCR Polymerase chain reaction
PPV Positive Predictive Value
RCI Reid Colposcopic Index

pRB Retinoblastoma gene product
 STH Southern transfer hybridization
 SCJ Squamocolumnar junction
 SCC Squamous cell carcinoma

TZ Transformation zone
URR Upstrea regulatory region

VIA Visual Inspection of the cervix after Acetic acid

VILI Visual Inspection with Lugol's Iodine
VIAM Visual Inspection with Magnification

INTRODUCTION

Vervical cancer is recognized as the third most common type of cancer in women worldwide and the second most prevalent cancer type and cause of cancer-related mortality in women in developing countries (*Jemal et al., 2011*). High-risk human papillomavirus (HPV) infection has been established as the main cause of cervical cancer (*Zur Hausen, 1996*).

Humanpapilloma virus is a nonenveloped DNA virus with a protein capsid. More than 120 different human papillomavirus (HPV) types have been catalogued so far, of which more than 40 infect the epithelial lining of the anogenital tract and other mucosal areas of the body (*De Villiers et al.*, 2004).

HPV types are often referred to as "cutaneous" or "mucosal" types. In general, cutaneous types infect the keratinizing epithelium (especially the skin of the hands and feet), while mucosal types infect non keratinizing epithelium, primarily the anogenital tract epithelium, though they can also be found in the oral mucosa, conjunctiva and respiratory tract (*Bonnez & Reichman*, 2000).

Clinically, HPV types are classified as high-risk (HR) or low-risk (LR) based upon their cervical cancer oncogenicity, Low-risk HPV types 6 and 11 cause nearly all genital warts and a minority of subclinical HPV infections (*Bosch et al.*, 2002). In contrast, the high-risk HPV types include 16, 18, 31, 33, 35, 45, and 58 and account for approximately 95 percent of cervical cancer cases worldwide. Other high-risk HPV types less often associated with neoplasia include 39, 51, 52, 56, 59, 68, 73, and 82 (*Munoz et al.*, 2003).

1

Transmission of genital HPV usually requires sexual contact with the genital skin, mucous membranes, or body fluids of a partner with either warts or subclinical infection (ACOG, 2005).

The variation of cervical lesions induced by HPV infection is involved in the continuous pathological process, including the subclinical, latent, and persistent infection of high risk (HR)-HPV, chronic cervicitis with abnormal results of cytological examination, cervical intraepithelial neoplasia (CIN), and cervical cancer, The majority of women with HPV infection do not develop into cervical cancer, which indicates that the single factor of HPV infection may be not sufficient for carcinogenesis (*Shuang et al.*, 2010).

The well-known risk factors of HPV infection in cervical lesions consist of high-risk sexual behaviors, immunosuppressant, age, contraceptive methods, other concurrent infection of sexually transmitted diseases (*Deacon et al.*, 2000).

The relationship between HPV genital infection and CIN and cervical lesions was first proposed by German virologist Zur Hausen in the early 1980s (*Shuang et al.*, 2010 & Zur Hausen, 2000). It was reported that the detection rate of HPV infection in normal women, patients with CIN I, CIN II, CIN III, and cervical cancer was 4%, 30%, 55%, 65%, and 99.8%, respectively (*Kulasingam et al.*, 2002).

Infection with HPV is suspected by the appearance of clinical lesions and through the results of cytology, histology, and colposcopy, all of which are subjective and often inaccurate. In addition, serology is unreliable and unable to distinguish past from current infection (*Carter*, 2000).

HPV infections are the most common diagnosed sexually transmitted diseases today. Studies utilizing HPV DNA testing of asymptomatic women in the general population estimate the prevalence of HPV infection to be in the range of 2–44% (*Herrero et al.*, 2005).

This wide variation in prevalence estimates is largely explained by age differences among population samples studied, and by differences in the molecular sensitivity of the various HPV DNA assays used to detect viral DNA (*Bosch*, 2003).

Papanicolaou (Pap) staining is the gold standard for detecting abnormal cervical epithelial cells, using microscopic analysis of conventional cervical smears or cell suspensions from liquid cytology medium (*Molijn et al.*, 2005).

Molecular diagnostic tests for HPV can augment screening for cervical cancer when used in conjunction with the Pap smear (*Molijn et al.*, 2005).

Colposcopy is one of the primary diagnostic methods used to detect CIN and cervical cancer, following an abnormal cytological screen (Papanicolaou smear) so the major role of colposcopy is in guiding the diagnostic biopsy. Fundamentally, the clinicians in the United States follow a histological standard of disease, in which the histological diagnosis of the colposcopically directed biopsy is considered the true underlying disease severity. This severity dictates management (*Jeronimo & Schiffman*, 2006). HPV testing changes the colposcopic practice as HPV screening and triage will increasingly change the patient population referred to colposcopy (*Jeronimo & Schiffman*, 2006).

AIM OF THE WORK

valuation of the different methods of diagnosis of cervical HPV infection in Egyptian females by cytology, histopathology, colposcopy and HPV genotyping.