

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING STRUCTURAL ENGINEERING DEPARTMENT

SHEAR BEHAVIOR OF SELF COMPACTING HIGH STRENGTH CONCRETE BEAMS

BY Ahmed Essawy Mohamed Essawy

B.SC. 2006 Structural Division Civil Engineeering Department Ain Shams University

A Thesis

Submitted in partial fulfillment for the requirements of the Degree of Master of Science in Structural Engineering

Supervised by

Prof. Dr. Ayman Hussein Hosny Khalil

Prof. of Reinforced Concrete Structures
Faculty of Engineering
Ain Shams University

Prof. Dr. Ahmed Hassan Ghallab

Prof. of Reinforced Concrete Structures Faculty of Engineering Ain Shams University

> Faculty of Engineering Ain Shams University Cairo-2015

STATEMENT

This thesis is submitted to Ain Shams University, Cairo, Egypt, for the degree

of Master of Science in Civil Engineering (Structural).

The work included in this thesis was carried out by the author in the

Department of Civil Engineering (Structural Division), Ain Shams University, from

June 2009 to September 2014.

No part of this thesis has been submitted for a degree or qualification at any

other University or Institute.

Date : 02 / 02 / 2015

Name : Ahmed Essawy Mohamed

Signature: Ahmed Essawy

ii

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING STRUCTURAL ENGINEERING DEPARTMENT Date: 02/02/2015

Approval Sheet

Thesis	: Master of Science in Civil Engine	ering (Structural)
Student Nam	e: Ahmed Essawy Mohamed Essawy	y
Thesis Title	: SHEAR BEHAVIOR OF SELF (COMPACTING HIGH
	STRENGTH CONCRETE BEAL	MS
Examiners	Committee:	
Prof. Dr. A	del Galal Tawfik Elattar	
	f R.C. Structures Engineering – Cairo University	
Prof. Dr. O	mar Ali Mousa El Nawawy	
	f R.C. Structures Engineering – Ain Shams Unive	rsity
Prof. Dr. A	yman Hussein Hosny Khalil	
	f R.C. Structures Engineering – Ain Shams Unive)	rsity
Prof. Dr. A	hmed Hassan Ghallab	
	f R.C. Structures Engineering – Ain Shams Unive)	rsity

INFORMAION ABOUT THE RESEARCHER

Name: Ahmed Essawy Mohamed Essawy

Date of Birth: October 5th,1983

Place of Birth: Cairo

Qualification: B.Sc. Degree in civil Engineering (Structural Engineering)

Faculty of Engineering, Ain Shams University 2006

Present Job: Structural Engineer and Deputy Project Manager for University To

Work Initiative, ECG Engineering Consultants Group S.A.

Signiture: Ahmed Essawy

ACKNOWLGMENTS

First of all, Thank you Allah for everything you gave me, for everything you didn't give me, for everything you protected me from- that which I know and that which I'm not even aware of, thank you for blessings that I didn't even realize were blessings, thank you from guidance when I felt like I was slipping, and thank you for every thing else because no matter how many things I try to list, at the end of the day, I can't even come close to thanking you enough.

I would like to express my sincerest appreciation to my advisors, Prof. Dr. Ayman Hussein Hosny Khalil and Prof. Dr. Ahmed Hassan Ghallab for their guidance, continuous, valuable guidance and the investments, giving me the opportunity to be involved in such interesting research and also for their constant encouragement, support and friendship which was the motivating force that kept work on my thesis in force until completion..

Finally I would like to thank my father and mother for their continuous support and for every thing they had gave me all my life.

Ahmed Essawy

AIN SHAMS UNIVERSITY
FACULTY OF ENGINEERING

STRUCTURAL DEPARTMENT

Abstract of the M.Sc. Thesis Submitted by

Eng. / Ahmed Essawy Mohamed

Title of the thesis:

SHEAR BEHAVIOR OF SELF COMPACTING HIGH STRENGTH CONCRETE BEAMS

ABSTRACT

The shear behavior of self-compacting high strength reinforced concrete beams was experimentally and theoretically evaluated in this study. The main studied factors were the amount of web reinforcement in the beam, the shearing span to depth ratio (a/d) and the web width of the beam. Eight samples I-shaped of high strength self-compacting reinforced concrete beams with a span of 1.8m and with a cross-section that varied from 100x250 mm to 200x250 mm, while the flange width varied from 200 to 300 mm.

The results showed that tested beams without web reinforcement showed brittle failure and that the presence of web reinforcement, improved the type of failure and, increased the shear capacity of the section.

Increasing the shearing span to depth ratio decreased the shear capacity of the concrete beams without web reinforcement, accordingly failure of beam with high shearing span to depth ratio was sudden and accompanied by the formation of one failure crack, while failure of beams with smaller (a/d) ratios was more explosive due to failure in the compression strut formed between point of loading and the support. Increasing the shearing span to depth ratio led to a significant decrease in the failure load of the beam with web reinforcement.

vi

CONTENTS

ACKNOWLEGMENTS	v
ABSTRACT	vi
CONTENTS	vii
LIST OF FIGURES	xi
LIST OF TABLES.	xv
CHAPTER 1: INTRODUCTION.	1
1.1 Background	2
1.2 Purpose of Investigation.	3
1.3 Structure of the thesis	4
CHAPTER 2: LITERATURE REVIEW	5
2.1 Introduction	6
2.2 Historical background (Caldarone, Michael A., 2008)	6
2.3 Shear and diagonal tension in beams (Nilson AH., 2010)	8
2.3.1 Diagonal tension in homogeneous elastic beams (Nilson AH., 2010)	8
2.3.2 Difference between arch action and beam action (Wight,j and Macgregor j ,2012)	12
2.3.3 Reinforced concrete beams without shear reinforcement (Nilson AH., 2010)	12
2.3.3.1Criteria for Formation of Diagonal Cracks	13
2.3.3.2 Behavior of Diagonally Cracked Beams	16
2.3.4 Reinforced concrete beams with web reinforcement (Nilson AH., 2010)	18
2.3.4.1 Beams with vertical stirrups	18
2.3.5 Behavior of beams failing in shear (Wight,j and Macgregor j ,2012)	20
2.4 High Strength Concrete	22
2.4.1 Introduction	22
2.4.2 Definition (Gosh SMIE, S.K. Ghosh, 2004)	23
2.4.1 Applications (Caldarone, Michael A., 2008)	24
2.4.2 Material (Caldarone, Michael A., 2008).	25

2.4.3 Properties of HSC (Caldarone, Michael A., 2008)	27
2.5 Self-Compacting Concrete	31
2.5.1 Development of self-compacting	31
2.5.2 Self-Compacting Concrete laboratory study (SCC laboratory study, 200	09)33
2.6 Previous Researches	
2.6.1 Behavior of High-Strength Concrete I-Beams with Low Shear Reinford	cement
(Teoh B. K., etc., 2002)	36
2.6.2 Shear Strength of Reinforced High-Strength Concrete Beams with Shear	ar Span-to-Depth
Ratios between 1.5 and 2.5(Sung-Woo Shin, etc., August 1999)	38
2.6.3 Shear behaviour of high strength self-compacting concrete (Adham, 20	06)40
CHAPTER 3: EXPERIMENTAL WORK	43
3.1Introduction.	44
3.2 Specimen Details	45
3.3 Materials	46
3.3.1 Coarse aggregate and Sand	46
3.3.2 Cement	46
3.3.3 Mixing Water	46
3.3.4 Steel Reinforcement	47
3.3.5 Silica Fume	47
3.3.6 Super plasticizer (Sika ViscoCrete® -20He)	47
3.4 Concrete Mix	48
3.5 Preparation of test specimens	49
3.6 Material properties	52
3.7 Instrumentation and Testing Procedure	52
CHAPTER 4: EXPERIMENTAL RESULTS	57
4.1 Introduction	58
4.2 Experimental Results	59
4.2.1 Cracking Patterns	59
4.2.1.1 Effect of web reinforcement (Group 1)	60
4.2.1.2 Effect of shearing span to depth ratio (beams without	
web reinforcement) Group 2	64
4.2.1.3 Effect of shearing span to depth ratio (beams with web	
reinforcement) Group(3)	66

4.2.1.4 Effect of web width (bw) Group 4	68
4.2.2 Load-deflection relationship.	71
4.2.2.1 Effect of web reinforcement (Group 1)	76
4.2.2.2 Effect of shearing span to depth ratio (beams without web	
reinforcement) Group 2	76
4.2.2.3 Effect of shearing Span to Depth ratio (beams with web reinforcement)	
Group 3	77
4.2.2.4 Effect of Web Width (bw) Group 4	77
4.2.3 Beam failure modes	77
4.2.3.1 Effect of web reinforcement (Group 1)	79
4.2.3.2 Effect of shearing span to depth ratio (beams without web rft.) - Group 2	79
4.2.3.3 Effect of shearing span to depth ratio (beams with web rft.) - Group 3	79
4.2.3.4 Effect of web width (bw) - Group 4	79
4.2.4 The Cracking and the Failure Loads	83
4.2.5 Strain measurements in steel reinforcement.	84
4.2.6 Concrete strain measurements	96
CHAPTER 5: DISCUSSION OF TEST RESULTS	105
5.1 Introduction	106
5.2 Discussion of results of the tested beams	107
5.2.1 Effect of web reinforcement (Group 1):	107
5.2.1.1 Cracking Pattern	107
5.2.1.2 Load Deflection Relationship	107
5.2.1.3 Mode of failure	110
5.2.2 Shearing span to depth ratio – beams without web reinforcement group (2)	111
5.2.2.1 Cracking Pattern	111
5.2.2.2 Load Deflection Relationship.	111
5.2.2.3 Mode of failure	114
5.2.3 Shearing span to depth ratio – beams with web reinforcement group 3	114
5.2.3.1 Cracking Pattern	115
5.2.3.2 Load Deflection Relationship.	115
5.2.3.3 Cracking and Ultimate loads	116
5.2.3.4 Mode of failure	117
5.2.4 Effect of web width b _w Group 4	117

5.2.4.1 Cracking Pattern.	117
5.2.4.2 Load Deflection Relationship	118
5.2.4.3 Mode of failure	120
CHAPTER 6: THEORETICAL ANALYSIS	121
6.1 Introduction	122
6.2 Methods to calculate ultimate shear strength of concrete beams	122
6.2.1 Code methods	122
6.2.1.1 Egyptian Code of Practice (ECP 203-2007)	123
6.2.1.2 American Concrete Institute ACI 318 (2011)	124
6.2.1.3 British Standard Code of Practice (BS 8110-97)	125
6.2.1.4 Eurocode 2 (2004)	126
6.3 Experimental Results vs. Theoretical Results	127
6.4 Comparison with computer software (Response 2000)	
CHAPTER 7: CONCLUSIONS AND RECOMMENDATIONS	
7.1 Summary	139
7.2 Conclusions	140
7.3 Recommendations for Future Work	
CHAPTER 8: REFERENCES	143

LIST OF FIGURES

Figure (2.1) Shear in homogeneous rectangular beams
Figure (2.2) Stress trajectories in a homogenous rectangular beam adapted
Figure (2.3) Beam action and arch action
Figure (2.4) Typical locations of critical combinations of shear and moment
Figure (2.5) Diagonal tension cracking in reinforced concrete beams
Figure (2.6) Forces at a diagonal crack in a beam without web reinforcement
Figure (2.7) Types of web reinforcement
Figure (2.8) Forces at a diagonal crack in a beam with vertical stirrups
Figure (2.9) Modes of failure
Figure (2.10) Applications on using high strength concrete
Figure (2.11) Typical stress-strain relation for high,
Moderate and conventional strength concrete
Figure (2.12) equipment used in scc study
Figure (2.13) specimen dimension
Figure (2.14) specimen dimension
Figure (2.15) specimen dimension
Figure (3.1) Concrete dimensions of beam specimens (mm)
Figure (3.2) Preparing beam specimens
Figure (3.3) Finishing preparations of beam reinforcement and formwork 50
Figure (3.4) Performing slump test and measuring slump diameter
Figure (3.5) Pouring concrete in beams
Figure (3.6) Beam specimen (B1)53
Figure (3.7) Beam specimen (B2)
Figure (3.8) Beam specimen (B3)53
Figure (3.9) Beam specimen (B4)
Figure (3.10) Beam specimen (B5)

Figure (3.11) Beam specimen (B6)	54
Figure (3.12) Beam specimen (B7)	55
Figure (3.13) Beam specimen (B8)	55
Figure (3.14) Location of dimic points and LVDT in a typical beam	56
Figure (3.15) Testing of concrete specimen	56
Figure (4.1) The cracking and failure pattern for group (1): B4, B2, B6 and B5	63
Figure (4.2) The cracking and failure pattern for group (2): B1 and B4	65
Figure (4.3) The cracking and failure pattern for group (3):B3 and B5	67
Figure (4.4) The cracking and failure pattern for group (4):B2, B7 and B8	70
Figure (4.5) Location of dimic points and LVDT in a typical beam	71
Figure (4.6) Load deflection curves for beam B1	72
Figure (4.7) Load deflection curves for beam B2	72
Figure (4.8) Load deflection curves for beam B3	73
Figure (4.9) Load deflection curves for beam B4	73
Figure (4.10) Load deflection curves for beam B5	74
Figure (4.11) Load deflection curves for beam B6	74
Figure (4.12) Load deflection curves for beam B7	75
Figure (4.13) Load deflection curves for beam B8	75
Figure (4.14) cracks propagated through the aggregates	78
Figure (4.15) Failure of beam (B1)	80
Figure (4.16) Failure of beam (B2)	80
Figure (4.17) Failure of beam (B3)	81
Figure (4.18) Failure of beam (B4)	81
Figure (4.19) Failure of beam (B5)	82
Figure (4.20) Failure of beam (B6)	82
Figure (4.21) Failure of beam (B7)	83
Figure (4.22) Failure of beam (B8)	83
Figure (4.23) Comparison between the cracking and failure loads of tested beams	84
Figure (4.24) Location of strain gages on stirrups, lower and upper reinforcement	85
Figure (4.25) Load versus longitudinal steel strain for beam (B1)	86

Figure (4.26) Load versus longitudinal steel strain for beam (B2)	. 86
Figure (4.27) Load versus stirrups steel strain for beam (B2)	. 87
Figure (4.28) Load versus longitudinal and stirrups steel strain for beam (B2)	. 87
Figure (4.29) Load versus longitudinal steel strain for beam (B3)	. 88
Figure (4.30) Load versus stirrups steel strain for beam (B3)	. 88
Figure (4.31) Load versus longitudinal and stirrups steel strain for beam (B3)	. 89
Figure (4.32) Load versus longitudinal steel strain for beam (B4)	. 89
Figure (4.33) Load versus longitudinal steel strain for beam (B5)	. 90
Figure (4.34) Load versus stirrups steel strain for beam (B5)	. 90
Figure (4.35) Load versus longitudinal and stirrups steel strain for beam (B5)	. 91
Figure (4.36) Load versus longitudinal steel strain for beam (B6)	. 91
Figure (4.37) Load versus stirrups steel strain for beam (B6)	. 92
Figure (4.38) Load versus longitudinal and stirrups steel strain for beam (B6)	. 92
Figure (4.39) Load versus longitudinal steel strain for beam (B7)	. 93
Figure (4.40) Load versus stirrups steel strain for beam (B7)	. 93
Figure (4.41) Load versus longitudinal and stirrups steel strain for beam (B7)	. 94
Figure (4.42) Load versus longitudinal steel strain for beam (B8)	. 94
Figure (4.43) Load versus stirrups steel strain for beam (B8)	. 95
Figure (4.44) Load versus longitudinal and stirrups steel strain for beam (B8)	. 95
Figure (4.45) Locations of dimic points for a typical beam specimen	. 96
Figure (4.34) Load versus concrete strain curves for beam B1 – left side	. 97
Figure (4.35) Load versus concrete strain curves for beam B2 – right side	. 97
Figure (4.36) Load versus concrete strain curves for beam B2 – left side	. 98
Figure (4.37) Load versus concrete strain curves for beam B3 – right side	. 98
Figure (4.38) Load versus concrete strain curves for beam B3 – left side	. 99
Figure (4.39) Load versus concrete strain curves for beam B4 – right side	. 99
Figure (4.40) Load versus concrete strain curves for beam B4 – left side	. 100
Figure (4.41) Load versus concrete strain curves for beam B5 – right part	. 100
Figure (4.42) Load versus concrete strain curves for beam B5 – left side	. 101
Figure (4.43) Load versus concrete strain curves for beam B6 – right side	. 101

Figure (4.44) Load versus concrete strain curves for beam B6 – left side	102
Figure (4.45) Load versus concrete strain curves for beam B7 – right side	102
Figure (4.46) Load versus concrete strain curves for beam B7 – left side	103
Figure (4.47) Load versus concrete strain curves for beam B8 – right part	103
Figure (4.48) Load versus concrete strain curves for beam B8 – left side	104
Figure (5.1) Load – deflection curves for group 1	108
Figure (5.2) Load – stiffness curves for group 1	109
Figure (5.3) Relation between loads and shear reinforcement for beams in group 1	110
Figure (5.4) Load deflection curves for group 2	112
Figure (5.5) Load-Stiffness curves for group 2	113
Figure (5.6) Relation between loads and shearing span to depth	
ratios for beams in group 2	114
Figure (5.7) Load deflection curves for group 3	115
Figure (5.8) Load-Stiffness curves for group 3	116
Figure (5.9) Relation between loads and shearing span to depth	
ratios for beams in group 3	117
Figure (5.10) Load deflection curves for group 4	118
Figure (5.11) Load-stiffness curves for group 4	. 119
Figure (5.12) Relation between loads and increase in web width	
for beams in group 4	. 120
Figure (6.1) Values of the experimental and predicted ultimate	
shear values for ECP 203-2007	. 130
Figure (6.2) Values of the experimental and predicted ultimate	
shear values for ACI 318-2011	130
Figure (6.3) Values of the experimental and predicted ultimate shear	
values for BS 8110-97.	. 131
Figure (6.4) Values of the experimental and predicted ultimate shear	
values for Euro code 2 [2004]	. 131
Figure (6.5) Values of the experimental and predicted ultimate shear values	
for the studied code equations together.	. 132

Figure (6.6)	Inputs for beam (B5) in Response 2000 program	133
Figure (6.7)	Outputs for beam (B5) in Response 2000 program	134
Figure (6.8)	Values of the experimental and predicted ultimate shear values	
	for Response 2000 program	136
Figure (6.9)	Values of the experimental and predicted ultimate shear values	
	for the studied codes and Response 2000 program	136