

Ain Shams University Faculty of Science Department of Chemistry

Preparation and Characterization of Polyurethanes for Flexible Packaging Applications

A Thesis Submitted the Ph.D. in Science (Chemistry)

Presented by

Mahmoud Abd El-Rahman Ibrahim

Under the Supervision of

Dr. Mohamed Ahmed Mekewi

Prof. of Polymer Chemistry, Department of Chemistry, Faculty of Science, Ain Shams University, Cairo

Dr. Ahmed Mohamed Ramadan

Prof. of Polymer Chemistry, Department of Chemistry, Faculty of Science, Helwan University, Cairo

Dr. Farida El Darse

Prof. of Analytical Chemistry, Department of Chemistry, Faculty of Science, Helwan University, Cairo

Dr. Mona Hassan Abd El-Rehim

Asso. Prof. of Packing and Packaging Materials, National Research Centre, Dokki, Cairo

Dr. Nabaweya Ali Mossa

Asso. Prof. of Physical Chemistry, Department of Chemistry, Faculty of Science, Ain Shams University, Cairo

Cairo (2016)

Title of the (Ph.D) Thesis: Preparation and Characterization of Polyurethanes for Flexible Packaging Applications

Name of the Candidate: Mahmoud Abd El-Rahman Ibrahim

Thesis Advisors:

Dr. Mohamed Ahmed Mekewi

Prof. of Polymer Chemistry, Department of Chemistry, Faculty of Science, Ain Shams University

Dr. Ahmed Mohamed Ramadan

Prof. of Polymer Chemistry, Department of Chemistry, Faculty of Science, Helwan University

Dr. Farida Mohamed Saad El-Din El Darse

Prof. of Analytical Chemistry, Department of Chemistry, Faculty of Science, Helwan University

Dr. Mona Hassan Abd El-Rehim

Asso. Prof. of Packing and Packaging Materials, National Research Centre, Cairo, Egypt

Dr. Nabaweya Ali Mossa

Asso. Prof. of Chemistry, Department of Chemistry, Faculty of Science, Ain Shams University

Head of Chemistry Department

Prof. Dr. Hamed Ahmed Younis Derbala

Acknowledgment

I would like to express my sincere gratitude to my principal supervisor, **Dr.**

Mohamed Ahmed Mekewi, for helping structuring the present research

project, his guidance, support and patience throughout my PhD studies and

the thesis finalization.

I am also grateful to Dr. Farida El Darse and Dr. Mona Hassan Abd El-

Rehim for their technique guidance and helpful suggestions. I would like to

thank Dr. Ahmed Mohamed Ramadan and Dr. Nabaweya Ali Mossa for

their valuable supervision.

My sincere thanks also go to Dr. Ahmed Mohamed Abo-Elwafa for

providing me with all the support needed, knowledge, and skills throughout

the course of my work which will benefit me for many years to come.

My special gratefulness is due to my wife Dr. SAMAR for her

encouragement, support, and patience to fulfill my study.

"I DEDICATE THIS WORK TO MY WIFE"

I would also like to thank my family for their support and encouragement.

I would to acknowledge the funding support allowed by DEGLA chemicals

Co. in addition to the laboratory research facilities made available to

accomplish this project.

Finally, I would like to thank members of the research team, Mohamed

Hashem, Ahmed Sayed and Mohamed Abd ElAziz for creating an enjoyable

working environment.

Mahmoud Abd El-Rahman Ibrahim

Cairo: June 2016

i

Contents

			Page no.
		Acknowledgment	i
		List of Tables	viii
		List of Figures	x
		List of Abbreviations	xiii
		Abstract	xv
CH	APTER 1	General Introduction	1
	1.	Packaging and Flexible Packaging	2
1.1		Polymeric Films	3
	1.1.1	Polyethylene	3
	1.1.2	Polypropylene (PP)	4
	1.1.3	Polyvinyl Chloride (PVC)	4
	1.1.4	Polyester	5
	1.1.5	Pearliesd Polypropylene	5
	1.1.6	Metallized Films	5
	1.1.7	Aluminum Cans and Foil	5
1.2		Surface Preparation for Improved Adhesion	6
1 2		Plastic Surface Printing, Lamination and Slitting	6

	1.3.1	Printing	6
	1.3.1.1	Gravure Printing	7
	1.3.1.2	Flexography Printing	8
	1.3.2	Lamination	9
	1.3.3	Slitting	9
1.4		Inks for Printing on Plastic Films	9
1.5		Plasticizers in Food Packaging	10
1.6		Polyurethane Plasticizer	12
		References	13
CI	HAPTER 2	Preparation and Characterization of Polyurethane Plasticizer for Printing Inks	17
CI 2.1	HAPTER 2	•	17
	2.1.1	Polyurethane Plasticizer for Printing Inks	
		Polyurethane Plasticizer for Printing Inks Introduction	18
	2.1.1	Polyurethane Plasticizer for Printing Inks Introduction	18 18
	2.1.1	Polyurethane Plasticizer for Printing Inks Introduction	18 18 19
	2.1.1 2.1.2 2.1.3	Polyurethane Plasticizer for Printing Inks Introduction	18 18 19
	2.1.1 2.1.2 2.1.3 2.1.3.1	Polyurethane Plasticizer for Printing Inks Introduction	18 18 19 20 22

	2.1.3.4.1	Polyether Polyol	25
	2.1.3.4.2	Polyester Polyol	26
	2.1.4	Polyurethane Applications	27
	2.1.5	Types of Polyurethane Structures	28
	2.1.5.1	Flexible PU Structures	28
	2.1.5.2	Rigid PU Structures	29
	2.1.5.3	Thermoplastic PU Structures	29
	2.1.6	Thermoplastic Polyurethane Elastomers	29
	2.1.7	Factors Affecting Polyurethane Properties	31
2.2		Aim of Work	37
2.3		Materials and Methods	38
	2.3.1	Chemicals	38
	2.3.2	Synthesis of Polyurethane Resin	38
	2.3.3	Characterization and Measurements	39
	2.3.4	Printing Ink Characterization	41
2.4		Results and Discussion	43
	2.4.1	Fourier Transform Infrared (FT-IR) Studies	44
	2.4.2	Gel Permeation Chromatography	51
	2.4.3	Printing Ink Characteristics	55
		References	62

CHAPTER 3	Synthesis of Polyurethane Plasticizer Based on Vegetable oils-Derived Polyols and their Applications in Printing Inks	71
3.1	Introduction	72
3.1.1	The Need of Renewable Resources in Designing of Polymers	72
3.1.2	Industrial Vegetable Oils	72
3.1.3	Chemistry of Vegetable Oils	74
3.1.4	Advances in Vegetable Oil Based Polyurethanes	76
3.1.4.1	Vegetable Oil Isocyanate	76
3.1.4.2	Vegetable Oil Polyols	77
3.1.5	Natural Oil Polyol-Based Polyurethanes	81
3.1.6	Palm Olein, Soybean Oil and Castor Oil Based Polyols and Polyurethanes	83
3.1.6.1	Palm Olein	83
3.1.6.2	Soybean Oil	86
3.1.6.3	Castor Oil	89
3.2	Aim of Work	93
3.3	Materials and Methods	94
3.3.1	Chemicals	94
3.3.2	Synthesis and Preparation Parts	94
Part I:	Polyurethane Resin from Different Palm-Based Polyols by the Ring Opening of Epoxidized Palm	94

Olein with Water, Methanol and Glycol.

I.1	Preparation of Palm Olein Polyol	94
I.1.1	Epoxidation of Palm Olein	94
I.1.2	Ring Opening with Water, Methanol and Ethylene Glycol	95
I.2	Synthesis of Polyurethane Resin	96
Part II:	Polyols from Soybean Oil via Epoxidation and Ring Opening and Polyurethane Therefrom	98
II.1	Preparation of Soybean Oil Polyol	98
II.1.1	Epoxidation of Soybean Oil	98
II.1.2	Ring Opening of Epoxidation of Soybean Oil with Methanol	98
II.2	Synthesis of Polyurethane Resin	99
Part III:	Preparation and Performance Evaluation of Polyurethane Resin Based on PTMG 2000 and Castor Oil Blends as Polyol Component	100
III.1	Synthesis of Polyurethane Resin	100
3.3.3	Measurements Part	100
3.3.4	Printing Ink Characterization Part	102
3.4	Results and Discussion	104
3.4.1	The fatty Acid Distribution and Characteristics of Palm Olein, Soybean Oil and Castor Oil	104
3.4.2	Properties of VO Polyols and Polyurethanes	105

3.4.3	Chemical Structure Disclosure	109
3.4.4	Molecular Weight Characterization by Gel Permeation Chromatography (GPC)	115
3.4.5	Differential Scanning Calorimetry (DSC)	120
3.4.6	Printing Ink Characteristics	125
	References	129
	General Conclusion	142
	Outlook	144

List of Tables

Item	Title	Page no.
Table 2.1	Sample codes with diverse formulation on the basis of	44
	diisocyanates, chain extenders and polyols for	
	polyurethanes	
Table 2.2	GPC results and physical characteristics of prepared	53
	polyurethanes	
Table 2.3	Mechanical and thermal properties of printing inks	56
	with prepared polyurethane plasticizers	
Table 2.4	Optical properties of printing inks with prepared	60
	polyurethane plasticizers	
Table 3.1	Chemical structure of common fatty acids	75
Table 3.2	Fatty acid composition of selected vegetable oils	76
Table 3.3	The fatty acid distribution of several common oils	104
Table 3.4	Characteristics of palm olein, soybean and castor oil	105
Table 3.5	Sample codes with diverse formulation on the basis of	106
	vegetable oil based- polyols for PUEs	
Table 3.6	Characteristics of palm olein polyols, soybean polyol	107
	and castor oil.	
Table 3.7	Technical requirements for polyols used in	108
	polyurethane industry	
Table 3.8	Mn, Mw and PD of PTMG, CO and the prepared	117
	polyols	
Table 3.9	Mn, Mw and PD of polyurethanes prepared using	120
	PTMG, CO and the prepared polyols	

Table 3.10	Tg of PTMG, CO and prepared polyols and	125
	polyurethanes	
Table 3.11	Mechanical and thermal properties of printing inks	126
	with standard and prepared polyurethane plasticizers	
Table 3.12	Optical properties of printing inks with standard and	127
	prepared polyurethane plasticizers	

List of Figures

Item	Title	Page no.
Figure 1.1	Schematic drawing of the gravure printing process	7
Figure 1.2	Schematic drawing of the flexographic printing process	8
Figure 2.1	Repeating unit of polyurethane	18
Figure 2.2	Global polyurethane market estimates and forecast,	19
	2012 - 2020	
Figure 2.3	Preparation of polyurethane	20
Figure 2.4	Polyurethane polymerization based on the one-shot	21
	method and prepolymer method	
Figure 2.5	Aromatic and aliphatic diisocyanates	22
Figure 2.6	Basic reactions of isocyanate with different reactants	23
Figure 2.7	Reaction between isocyanate and alcohol	24
Figure 2.8	Hard segment and soft segment in PU	28
Figure 2.9	General scheme of polyurethane (PU) synthesis	39
Figure 2.10	Molecular structures of the raw materials used for	43
	PUEs synthesis	
Figure 2.11	FT-IR spectra of PPG 2000 and PTMG 2000	45
Figure 2.12	FT-IR spectra of HDI, IPDI, TDI and MDI	46
Figure 2.13	FT-IR spectra of 1, 4 BD and 1, 3 PD	47
Figure 2.14	FT-IR spectra of PUEs (PU 01, PU 02, PU 03 and PU	49
	04) based on different isocyanates MDI, TDI, HDI and	
	IPDI respectively	
Figure 2.15	FT-IR spectra of PUEs (PU 05 and PU 06) based on 1,	50
	3- PDO and 1, 4-BD respectively	

Figure 2.16	FT-IR spectra PUEs (PU 07, PU 08 and PU 09) based	51
	on PTMG, PTMG/PPG and PPG polyols	
Figure 2.17	GPC chromatograms of PU 01, PU 02, PU 03 and PU	52
	04 based on different isocyanates	
Figure 2.18	GPC chromatograms of PU 05 and PU 06 based on	52
	different chain extenders	
Figure 2.19	GPC chromatograms of PU 07, PU 08 and PU 09 based	53
	on different polyols	
Figure 2.20	CIELAB color chart	58
Figure 3.1	Global annual production distributions (2013/2014) of	74
	palm oil, castor oil and soybean oil	
Figure 3.2	Structure of triglyceride molecule	75
Figure 3.3	Routs of preparation of vegetable oil based polyols	78
Figure 3.4	Production of vegetable oil-based polyols via	79
	epoxidation and oxirane ring-opening pathway	
Figure 3.5	Major structure of triglycerol of POo	84
Figure 3.6	Chemical structure of soybean oil	87
Figure 3.7	Chemical structure of castor oil	90
Figure 3.8	Synthesis of palm olein polyols via epoxidation of	96
	palm olein as well as ring opening of epoxidized PO by	
	water, methanol and ethylene glycol	
Figure 3.9	General scheme of polyurethane (PU) synthesis	97
Figure 3.10	Synthesis of methoxylated soybean polyol (Polyol SM)	99
	via ring opening of epoxidized soybean by methanol	
Figure 3.11	FT-IR spectra of palm olein, epoxidized palm olein	110
	(EPOo) and palm olein polyols	

Figure 3.12	FT-IR spectra of polyurethane standard (PU-STD) and palm olein based polyurethanes from (PU-PW 50%), PU-PM 50% and PU-PG 50%)	111
Figure 3.13	The FT-IR spectra of soybean Oil, epoxidized soybean oil (ESO) and methoxylated soybean polyol (Polyol SM)	112
Figure 3.14	FT-IR spectra of polyurethane standard (PU-STD) and soybean based polyurethane (PU-SM 50%)	113
Figure 3.15	FT-IR spectra of castor oil, polyurethane standard (PU-STD) and castor based polyurethane (PU-CO 50).	114
Figure 3.16	GPC chromatograms of palm olein polyols, i.e. Polyol PW, Polyol PM and Polyol PG.	116
Figure 3.17	GPC chromatograms of soybean polyol, i.e. Polyol SM	118
Figure 3.18	GPC chromatograms of polyurethanes prepared from palm olein polyols and polyurethane standard	119
Figure 3.19	GPC chromatograms of polyurethane standard and polyurethanes prepared from soybean polyol and castor oil	119
Figure 3.20	DSC thermograms of PTMG, castor oil, palm olein polyols and soybean polyol	122
Figure 3.21	DSC analysis of polyurethane STD and green based polyurethanes	124

LIST OF ABBREVIATIONS

US United States

LDPE Low Density Polyethylene

HDPE High Density Polyethylene

LLDPE Linear Low Density Polyethylene

PP Polypropylene

OPP Oriented Polypropylene

PVC Polyvinyl Chloride

BOPP Biaxially Oriented Polypropylene

PET Polyester

BOPET Biaxially Oriented Polyester

IUPAC International Union of Pure and Applied Chemistry

DEHP Diethylhexyl Phthalate

PU Polyurethane

TPUs Thermoplastic Polyurethanes

TPUEs Thermoplastic Polyurethane Elastomers

DI Diisocyanate

MDI Diphenylmethane Diisocyanate

TDI Toluene Diisocyanate

HDI Hexamethylene Diisocyanate

IPDI Isophorone Diisocyanate

DBTDL Dibutyltin Dilaurate

PTMG Polytetramethylene Glycol

PPG Polypropylene Glycol

STD Standard

PEG Poly (ethylene) Glycol