Effect of Varied Temperature Dialysate on Small Sized Toxins Removal in Haemodialysis Patients

Thesis

Submitted For Partial Fulfillment of M.Sc. Degree in Internal medicine

By Enas Tolba Tolba Mohammed

M.B.B.Ch., Cairo University

Supervised by

Prof. Dr. Iman Ibraheim Sarhan

Professor of Internal Medicine and Nephrology Faculty of Medicine -Ain shams University

Dr. Essam Nour-Eldin Affify

Assistant Professor of Internal Medicine and Nephrology Faculty of Medicine -Ain shams University

Dr. Haitham Ezzat Abdel Aziz

Assistant Professor of internal medicine and Nephrology Faculty of medicine -Ain shams University

> Faculty of medicine Ain shams University 2016

ACKNOWLEDGMENT

First and foremost thanks to Allah, the Most Merciful.

I wish to express my deep appreciation and sincere gratitude to Prof. Iman Ibraheim Sarhan, Professor of Internal Medicine and Nephrology, Ain Shams University, for her close supervision, valuable instructions, continuous help, patience, advices and guidance. She has generously devoted much of her time and effort for planning and supervision of this study. It was a great honor to me to work under her direct supervision.

J wish to express my supreme gratitude to Dr. Essam Nour-ElDin Affify, Assistant Professor of Internal Medicine and Nephrology, Ain Shams University, for his kind supervision, indispensable advice and great help in this work.

Also I wish to express my great thanks and gratitude to Dr. Haitham Ezzat Abdel Aziz, Assistant Professor of Internal Medicine and Nephrology, Ain Shams University, to whom I owe more than words that can express for his generous cooperation and support all of the time.

Last and not least, $\mathcal I$ want to thank all my staff, my family, my colleagues,, for their valuable help and support.

Finally I would present all my appreciations to my patients without them, this work could not have been completed.

Thank you

Enas Tolba Tolba Mohammed

LIST OF CONTENTS

Subject	Page No.
List of Abbreviations	VI
List of Tables	VIII
List of Figures	X
Introduction	1
Aim of the Work	3
Review of Literature	4
Patients and Methods	15
Results	25
Discussion	41
Summary	49
Conclusion	53
Recommendations	54
References	55
الملخص العربي – Arabic Summary	

LIST OF ABBREVIATIONS

Abbr.	Full Term
A ¥7	A . ' Y/
AV	Arterio-Venous
BRs	Baroreflex sensitivity
Creat	Creatinine
Deg	Degree
HD	Haemodialysis
HDF	Haemodiafiltration
IDH	Intradialytic hypotension
Kt/V	Dialyzer Clearance X Time of Dialysis / Volume of Body Fluid
LV	Left Ventricle
MRI	Magnetic Resonance Imaging
Pt	Patient

Abbr.	Full Term
SD	Standard Deviation
Temp	Temperature
U	Urea
UF	Ultra-filtration
$\mathbf{U}_{ extsf{post}}$	Postdialysis Urea
$\mathbf{U}_{\mathtt{pre}}$	Predialysis Urea
URR	Urea Reduction Ratio
PASW	Predictive Analytics SoftWare

LIST OF TABLES

Table No.	Title	Page No.
Table (1)	Demographic data of the study population	26
Table (2)	Comparison between groups as regard demographic data	27
Table (3)	Comparison between groups as regard solute clearance	28
Table (4)	Comparison between groups as regard patient perception of coldness, shivering and discomfort during dialysis on different dialysate temperature	29
Table (5)	Comparison between groups as regard patients' experience evaluation for different dialysate temperatures (A):	31
Table (6)	Comparison between groups as regard patients' experience evaluation to cool temperature dialysate (B):	32
Table (7)	shows the difference between basal body temperature of the patients and dialysate temperature in relation to urea reduction ratio	34

Table No.	Title	Page No.
Table (8)	Comparison between groups as regard patients' perception of coldness, shivering and discomfort during dialysis on different dialysate temperatures compared to basal body temperature:	36
Table (9)	Comparison between groups as regard patients' evaluation for different dialysate temperatures compared to basal body temperature:	38
Table (10)	Comparison between groups as regard patients' experience compared to basal body temperature:	39

LIST OF FIGURES

Figure No.	Full Term	Page No.
Figure (1)	shows demographic data of the study population gender	26
Figure (2)	shows urea reduction ratio in relation to different dialysate temperature.	29
Figure (3)	shows Comparison between groups as regard patient perception of changes during dialysis on different dialysate temperatures	30
Figure (4)	comparison between groups as regard patients' experience evaluation for different dialysate temperatures (A).	32
Figure (5)	comparison between groups as regard patients' experience evaluation (B).	33
Figure (6)	shows that the highest urea reduction ratio was among patients in whom dialysate temp differs from basal body temp by a range of 0.5 to 1 degree	35

Figure No.	Full Term	Page No.
Figure (7)	shows Comparison between groups as regard patients' perception of changes during dialysis on different dialysate temperatures compared to basal body temperature.	37
Figure (8)	comparison between groups as regard patients' evaluation for different dialysate temperatures compared to basal body temperature.	39
Figure (9)	comparison between groups as regard patients' experience compared to basal body temperature	40

INTRODUCTION

Improving toxin removal can potentially improve the hemodialysis (HD) patient outcome. HD procedure progressed from low efficiency low-flux dialysis to high efficiency high-flux dialysis and currently towards increased acceptance for convection based hemodiafiltration (HDF). However, in all these extracorporeal renal replacement therapies, toxin removal is primarily impaired by inter-compartmental resistance (Ward, et al., 2006).

Dialysate temperature is an easy maneuver which can change the blood temperature, a surrogate of body core temperature. Warm dialysate can increase the body core temperature, resulting in vasodilation and increased mobilization of sequestered toxins to intravascular compartment (Selby and McIntyre, 2006).

Cool dialysate induced vasoconstriction may reduce the toxin mobilization from remote inaccessible body compartments to intravascular compartment, thus hindering the toxin removal, which is contrary to the fundamental objective of HD. Hence, although cool dialysate helps in prevention of intra-dialytic episodes in short-term, prolonged usage may lead to poor patient outcome by impaired toxin removal (**Duranton**, *et al.*, **2014**).

