

Evaluation of the Role of Bronchoscopy in the Intensive Care Units

Thesis

Submitted for partial fulfillment of M.D.

Degree in Chest Diseases

Presented by

Aalaa Kamal Shata

M.B., B. Ch, M Sc in Chest Diseases & Tuberculosis Supervised

by

Dr. Emad El Din Abdel Wahab Korraa

Professor of Chest Diseases
Faculty of Medicine, Ain Shams University

Dr. Ibrahim Ali Dwedar

Assistant Professor of Chest Diseases Faculty of Medicine, Ain Shams University

Dr. Ashraf Adel Gomaa

Assistant Professor of Chest Diseases Faculty of Medicine, Ain Shams University

> Faculty of Medicine Ain Shams University 2017

تقييم دور المنظار الشعبى في وحدات الرعاية المركزة

رسالة

توطئة للحصول علي درجة الدكتوراة في الامراض الصدرية والتدرن

مقدمة من

الاء كمال حسني شطا/الطبيبة ماجستير الامراض الصدرية والتدرن

تحت إشراف

□أد/ عماد الدين عبد الوهاب قراعة

أستاذ الامراض الصدرية والتدرن كلية الطب- جامعة عين شمس

د/ ابراهیم علی دویدار

استاذ مساعد الامراض الصدرية والتدرن كلية الطب- جامعة عين شمس

□د/ اشرف عادل جمعة

استاذ مساعد الامراض الصدرية والتدرن كلية الطب- جامعة عين شمس كلية الطب جامعة عين شمس

سورة البقرة الآية: ٣٢

First of all, I would like to thank **ALLAH** the source of all knowledge and wisdom. From him we owe all that we have and all that we are.

I would like to express my great appreciation to **Professor Emad El Din Abdel Wahab Korraa**, Professor of Chest Diseases Ain Shams University, who give me the honor to work under his supervision with encouragement through this work.

I would like to express my sincere gratitude to Assistant Professor Ibrahim Ali Dweedar, Assistant Professor of Chest Diseases Ain Shams University, for his valuable suggestions and assistance in this study. I am indebted to him for his expert and sincere guidance and encouragement.

I am grateful to Assistant Professor Ashraf Adel Gomaa, Assistant Professor of Chest Diseases, Ain Shams University, for his unceasing help ,support and his encouragement to accomplish this study.

Last but not least, I would like to thank my family and colleagues who supported me, helped me with their suggestions and ideas, and made this work possible.

Contents

Subjects	Page
• List of Abbreviations	I
List of table	II
List of Figures	III
• Introduction	1
Aim of the Work	4
Review of literature:	
Chapter 1: bronchoscopy	5
Chapter 2: bronchoscopy in intensive care unit	67
Subjects And Methods	111
Results	127
Discussion	159
Summary and Conclusion	185
Recommendations	192
References	193
Arabic Summary	

List of Abbreviations

A.B.G Arterial blood gas **ABC** Airway, breathing, circulation **AFB** Acid Fast Bacilli **AIDS** Acute Immune Deficiency syndrome APC Argon plasma coagulation Adult Respiratory Distress Syndrome **ARDS ARF** Acute respiratory failure **ASUSH** Ain Shams University Specialized Hospital BAL Broncho alveolar lavage BB **Endobronchial biopsy** Bare-metal stent BMS **BUN** Blood Urea Nitrogen CAP Community Acquired Pneumonia **CBC** Complete Blood Count **CHD** congenital heart diseases **CMV** Cytomegalovirus Carbon dioxide CO_2 **COPD** Chronic Obstructive Pulmonary Disease Co-V Corona viruse **CPIS** Clinical pulmonary infection score : Cr Creatinine CTComputed Tomography **DDAVP** D-arginine vasopressin **DEAFF** Detection of early antigen fluorescent foci Drug-eluted stent DES DHE Dihematoporphyrin ether / ester DM **Diabetes Mellitus EBES** Endobronchial electro surgery **EBET** Endobronchial electrotherapy Endobronchial ultrasound **EBUS ECG** Electro Cardio Graph

∠List of Abbreviations

ESR	Erythrocyte sedmintation rate	
ETAs	: Endotracheal aspirates	
ETT	: Endotracheal Tube	
FB	: Flexible Bronchoscopy	
FBs	: Foreign bodies	
FEV1	: Forced expiratory volume in one second	
FFB	Flexible fibreoptic bronchoscopy	
FiO ₂	: The inspired oxygen concentration	
FOB	: Fibroptic Bronchoscopy	
GIT	: Gastrointestinal tract	
HB	Haemoglobin	
HCAP	: Health care associated pneumonia	
HDR	: High dose rate	
HPDs	: Hemato porphyrin derivatives	
HTN	: Hypertension	
ICP	: Increase intracranial pressure	
ICU	: Intensive Care Unit	
ILD	: Interstitial Lung Disease	
INR	: International Normalization Ratio	
LMA	: laryngeal mask airway	
LMWH	Low molecular weight heparin	
LPR	Laser photoresection	
Nd:YAG	: Neodymium-doped yttrium aluminum garnet	
NOACs	: New Oral Anticoagulants	
PA	: Poster anterior	
PaCO ₂	: Pressure of arterial carbon dioxide	
PaO_2	: Arterial pressure of oxygen	
PBT	: Pre bronchoscope tests	
PCR	: Polymerase Chain Reaction	
PDT	: Photodynamic therapy	
PEEP	: Positive End Expiratory Pressure	
PEEP i	: Intrinsic PEEP	
PetCO ₂	: End-tidal PCO ₂	
PET-CT	: Positron Emission Tomography-Computed	

PITTS: Post tracheostomy tracheal stenosis

PLT Platelets

PTT Prothrombin Time

RB Rigid bronchoscope

RICU : Respiratory Intensive Care Unit

SAT : Saturation of oxygen

SaO₂ Oxygen saturation

SpO2 : Saturation of Oxygen

SVCO : superior vena cava obstruction

TB: Tuberculosis

TBBx Transbronchial biopsy

TBLB : Trans bronchial lung biopsy

TBNA: Trans bronchial needle aspiration

UAO : upper airway obstruction

UFH : Unfractionated heparin

VAP : Ventilator associated pneumonia

WBCs : Wight blood cells

∠List of Table

List of Table

Tab. No.	Subject	Page
Table (1)	Baseline Characteristics of Patients Prior to Bronchoscopy	127
Table (2)	Pre bronchoscopic laboratory investigations	128
Table (3)	Oxygen saturation before, during and after bronchoscopies	129
Table (4)	Places of bronchoscopes performance	129
Table (5)	Types and indications of bronchoscopies	130
Table (6)	Comparison between ventilated and none-ventilated patients as regard indications of bronchoscopy	132
Table (7)	Comparison between flexible and rigid bronchoscopy as regard indications of bronchoscope	133
Table (8)	Comparison between ventilated and non-ventilated groups as regard type of bronchoscopy	134
Table (9)	Comparison between flexible and rigid bronchoscopy as regard laboratory parameters before bronchoscopy	135
Table (10)	Comparison between ventilated and none ventilated patients as regard oxygen saturation variation	136
Table (11)	Comparison between flexible and rigid bronchoscopy as regard oxygen saturation variations	137
Table (12)	Cardiac rhythm monitoring during, before and	138

Tab. No.	Subject	Page
	after bronchoscopy	
Table (13)	Comparison between flexible and rigid bronchoscope as regard cardiac rhythm monitoring	139
Table (14)	Causes of ICU admission	140
Table (15)	Indications of bronchoscopy	141
Table (16)	Comparison between ventilated and none ventilated patients group as regard cause of admission, indications of bronchoscopy	142
Table (17)	Comparison between flexible and rigid bronchoscopy as regard admission cause and indication of bronchoscopy	143
Table (18)	Pre bronchoscopy drugs and anesthesia	144
Table (19)	Comparison between ventilated and non ventilated patients as regard pre bronchoscopy drugs and type of anesthesia	145
Table (20)	Comparison between flexible and rigid bronchoscopy as regard type of anesthesia and pre bronchoscopy drugs	146
Table (21)	Comorbid diseases among studied groups	147
Table (22)	Procedures done with bronchoscopies	148
Table (23)	Comparison between ventilated and non-ventilated group as regard type of procedure	149
Table (24)	Comparison between flexible and rigid bronchoscope as regard procedures	150

∠List of Table

Tab. No.	Subject	Page
Table (25)	Bronchoscopies results	151
Table (26)	Description of results	
Table (27)	Comparison between ventilated and non-ventilated groups as regard results of bronchoscopy	151
Table (28)	Comparison between flexible and rigid bronchoscopy as regard results of bronchoscopy	152
Table (29)	Complications of bronchoscopies	153
Table (30)	Comparison ventilated and non- ventilated patients as regard complications of bronchoscopy	154
Table (31)	Comparison between flexible and rigid bronchoscopy as regard complications	154
Table (32)	Causes of contraindications for bronchoscopy	156

€List of Figures

List of Figures

Fig. No.	Subject	Page
Fig. (1)	Gustav Killian performing bronchoscopy. (a) On the <i>right</i> is an illustration of the bronchoscope, modified by Killian's coworker Brünings (b).	10
Fig. (2)	Three early bronchoscope models with different outer diameter (Olympus)	13
Fig. (3)	The Storz rigid bronchoscope	19
Fig. (4)	The EFER rigid bronchoscope	19
Fig. (5)	The Texas rigid bronchoscope.	19
Fig. (6)	The Dutau-Novatech rigid bronchoscope	20
Fig. (7)	Rigid bronchoscope accessories for deployment down the barrel.	20
Fig. (8)	Patient position in preparation for rigid bronchoscopy intubation	22
Fig. (9)	Various types of airway stents. a - Dynamic 'Y' stent; b to g - Dumon stent; h - covered wallstent (metallic stent with polyurethane coating).	32
Fig. (10)	Principle design of a fibre bronchoscope	37
Fig. (11)	Example of a complete modern endoscopic system.	38
Fig. (12)	Adapted valve to perform bronchoscopy in mechanically ventilated patients.	58
Fig. (13)	Fiber optic bronchoscope Pentax-Japan.	119
Fig. (14)	Flexible bronchoscopy through a) an endotracheal tube with a swivel adaptor and b) the laryngeal mask airway	120

∠List of Figures

Fig. No.	Subject	Page
Fig. (15)	Rigid bronchoscope	122
Fig. (16)	Percentage of patients groups	128
Fig. (17)	Types of bronchoscopies	131
Fig. (18)	Indications of bronchoscopy	131
Fig. (19)	Comparison between ventilated and none- ventilated patients as regard indications of bronchoscopy	133
Fig. (20)	Comparison between flexible and rigid bronchoscopy as regard indications of bronchoscope	134
Fig. (21)	Comparison between ventilated and non- ventilated groups as regard type of bronchoscopy	135
Fig. (22)	Comparison between ventilated and none ventilated patients as regard oxygen saturation variation	136
Fig. (23)	Comparison between flexible and rigid bronchoscopy as regard oxygen saturation variations	137
Fig. (24)	Indications of bronchoscopy:	141
Fig. (25)	Procedures done with bronchoscopies	148
Fig. (26)	Comparison between ventilated and non- ventilated group as regard type of procedure	149
Fig. (27)	Comparison between flexible and rigid bronchoscope as regard procedures	150
Fig. (28)	Comparison between ventilated and non- ventilated groups as regard results of bronchoscopy	152

∠List of Figures

Fig. No.	Subject	Page
Fig. (29)	Comparison between flexible and rigid bronchoscopy as regard results of bronchoscopy	153
Fig. (30)	Comparison ventilated and non- ventilated patients as regard complications of bronchoscopy	156
Fig. (31)	Comparison between flexible and rigid bronchoscopy as regard complications	158

Abstract

<u>Introduction:</u> Critically ill patients represent a high risk group for most invasive procedures. Bronchoscopy is a fundamental technique used in the study of respiratory diseases. It is increasingly being used in intensive care units (ICU) because it is easy to perform at the bedside, with few complications described with its use.

<u>Aim:</u> The aim of this study was to evaluate the role of bronchoscopy in the intensive care units (indications, advantages, disadvantages, results and complications).

<u>Patients and methods:</u> Bronchoscopy (rigid or fibroptic) was performed in Ain shams University hospital and Ain Shams University Specialized Hospitals on 80 ICU patients for diagnostic and/ or therapeutic indication. The patients were grouped into ventilated and non-ventilated.

Results: Fifty (62%) FOBs and 30 rigid bronchoscopies (37%) were performed on 30 ventilated patients (37.5 %) and the 50 none ventilated (62.5%). Ninety percent of flexible bronchoscopy was done for ventilated patients and 54% of rigid bronchoscopy was done in non-ventilated patients (54%). Eighty percent (80%) of the procedures were done for diagnostic purposes using FOB in 98% while 36.7% of bronchoscopies done for combined indications and 13.3% of the rapeutic indications bronchoscopies were done with rigid bronchoscopy. Fifty one percent (51.25%) of the procedures that were done with bronchoscopies was lavage followed by 25% stent insertion. In 83.3% of ventilated patients lavage was done while stent insertion more at non ventilated patients group. Twenty six percent (26.25%) of patients was diagnosed malignant and 20% with infections of lower respiratory tract. Complications occurred as (21.25%) with mortality rate 0.0% and hypoxia was the most common.

<u>Conclusion:</u> Safety is one of the most important issues when deciding to perform bronchoscope in the ICU that depends on the accuracy of selection of the patients for the procedure and the experience of the bronchoscopist and facilities available.

Keywords: ICU, Bronchoscopy, ventilated patients, rigid bronchoscopy, flexible bronchoscopy.