RELATIONSHIP BETWEEN CANDIDATE GENES OF INNATE IMMUNITY AND RESISTANCE TO VIRAL DISEASES IN CHICKEN

By

HAITHAM AHMED MOHAMED YACOUB

B.Sc. Agric. Sc. (Poultry Production), Ain Shams University, 2001M.Sc. Agric. Sc. (Poultry Breeding), Ain Shams University, 2006

A thesis submitted in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

in Agricultural Science (Poultry Breeding)

Department of Poultry Production Faculty of Agriculture Ain Shams University

2010

Approval Sheet

RELATIONSHIP BETWEEN CANDIDATE GENES OF INNATE IMMUNITY AND RESISTANCE TO VIRAL DISEASES IN CHICKEN

By

HAITHAM AHMED MOHAMED YACOUB

B.Sc. Agric. Sc. (Poultry Production), Ain Shams University, 2001M.Sc. Agric. Sc. (Poultry Breeding), Ain Shams University, 2006

This thesis for Ph.D. degree has been approved by:

Prof. Dr.	Kamal El-Dien Mostafa Saleh
	Prof. Emeritus of Poultry Breeding, Faculty of Agriculture
	Kafr El-Sheikh University
Prof. Dr.	Usama Mohamed Ali Shouraep
	Prof. of Poultry Breeding, Faculty of Agriculture, Air
	Shams University
Prof. Dr.	Ahmed Galal El-Sayed Gad
	Prof. of Poultry Breeding, Faculty of Agriculture, Air
	Shams University

RELATIONSHIP BETWEEN CANDIDATE GENES OF INNATE IMMUNITY AND RESISTANCE TO VIRAL DISEASES IN CHICKEN

By

HAITHAM AHMED MOHAMED YACOUB

B.Sc. Agric. Sc. (Poultry Production), Ain Shams University, 2001 M.Sc. Agric. Sc. (Poultry Breeding), Ain Shams University, 2006

Under the supervision of:

Prof. Dr. Moataz Mohamed Fathi Ahmed

Prof. of Poultry Breeding, Department of Poultry Production, Faculty of Agriculture, Ain Shams University (Principal Supervisor)

Prof. Dr. Ahmed Galal El-Sayed Gad

Prof. of Poultry Breeding, Department of Poultry Production, Faculty of Agriculture, Ain Shams University

Prof. Dr. Samia Ahmed El-Fiky

Research Prof. Emeritus of Cytogenetics and Embryo Transfer, Department of Cell Biology, National Research Center

ABSTRACT

Haitham Ahmed Mohamed Ahmed Yacoub: Relationship Between Candidate Genes of Innate Immunity and Resistance to Viral Diseases in Chicken. Unpublished Ph.D. Dissertation, Department of Poultry Production, Faculty of Agriculture, Ain Shams University, 2010.

Gallinacins are antimicrobial peptides that play a significant role in innate immunity in chicken. The aim of this study was to determine the relationship between candidate genes of innate immunity and resistance to Marek's disease and to predict whether the amino acids substitutions lead to produce new phenotypes. We used in current study two inbred lines of White Leghorn chickens, line 6 which selected for resistant to Marek's disease and line 7 which selected to susceptible to Marek's disease from ADOL, ARS, USDA. We examined gallinacins (1-5) and Gal-10 in current study by sequenced a 3.68 kb in two directions from two inbred lines (6 and 7). A total of 17 SNPs were identified within the sequenced regions. This equates to an SNP rate of 4.61 SNPs/kb, nearly to the previously reported 5 SNPs/kb across the entire chicken genome. The current study showed that the gallinacin genes are polymorphic because there are many single nucleotide polymorphisms (SNPs) in both inbred lines of White Leghorn chickens and some of these SNPs are nonsynonymous and others are synonymous and some of them are located in intronic region and the rest are in exonic region. All identified SNPs were intronic, except for Gal-1 and Gal-4, were exonic resulting in an amino acids changes but that is for Gal-1 only which have a non-synonymous SNP resulting in amino acids changes of asparagine to serine, histidine to tyrosine and tyrosine to serine, respectively. From SIFT (Sorting Intolerant from tolerant) program which used to predict whether an amino acids substitutions can affect protein function resulting in phenotypic effect, that is may be made the inbred line 7 of White Leghorn chickens are susceptible to Marek's disease rather than line 6. We are concluded that a new chromosomal region with effects on the response to Marek's disease in chickens was characterized in this study. Within this region, the SNPs in the gallinacin candidate genes could potentially be used

in a marker assisted selection program to enhance the response to Marek's disease. Analysis of the gallinacin genes in the protective pathways of disease resistance has also opened the possibilities for therapeutic strategies using endogenous antimicrobial peptides.

Key Words: single nucleotide polymorphisms, Gallinacin, genes, Marek's disease, resistance

ACKNOWLEDGMENTS

Firstly, I wish to express my prayerful thanks to "Allah" for every thing.

My deepest grateful and sincere thanks are extended to **Prof. Dr. M. M. Fathi**, Professor of Poultry Breeding, Poultry Production Department, Faculty of Agriculture, Ain Shams University for his supervision, valuable advice, revising the manuscript and continue supporting during study.

I deeply grateful and greatly indebted to **Dr. A. Galal**, Professor of Poultry Breeding, Poultry Production Department, Faculty of Agriculture, Ain Shams University for his supervision, interest, encouragement and revising the manuscript.

I wish to express my sincere grateful to **Prof. Dr. Samia El-Fiky**, Professor of Cytogenetics and Embryos, Cell Biology Department, Genetic Engineering and Biotechnology Division, National Research Center, for her supervision, encouragement and interest.

Special acknowledgements and deep grateful are due to **Dr. Hans H. Cheng,** Geneticists Supervisory, Avian Disease and Oncology Laboratory (ADOL), Agricultural Research Service (ARS), USDA for financial supporting, training, learning and his revision during this study in Michigan state University, USA.

Special acknowledgements and deep grateful are due to **Dr. Hassan Abed El-Meguid**, Associate Professor of Molecular Genetics, Cell Biology Department, Genetic Engineering and Biotechnology Division, National Research Center, for his supervision, encouragement and interest.

My thanks are also due to head of Poultry Production Department, **Prof.Dr. Ahmed Hatem El-Attar** and all staff members of Poultry Production Department,

Faculty of Agriculture, Ain Shams university, for their useful practical assistance.

My Sincere grateful also is due to my Parents, my wife, my beautiful daughter, sister and brothers for their encouragement and love.

CONTENTS

		Page
	LIST OF TABLE	iii
	LIST OF FIGURES	iv
	LIST OF ABBREVIATIONS	V
I	INTRODUCTION	1
II	REVIEW OF LITERATURE	3
1.	Overview of immune system	3
2.	Genetic markers in the chicken	3
3.	Single nucleotide polymorphism (SNP)	4
4.	Marek's Disease	7
5.	Development and use of inbred lines	10
6.	Genetic resistance to Marek's disease	12
7.	Integrated genomics	13
7.1.	Genome-wide QTL scan	13
7.2.	Gene profiling	16
7.3.	Virus-host protein interaction screens	17
8.	Antimicrobial peptides	18
9.	Defensins	19
10	Avian -defensins	19
11.	Avian non-heterophil -defensins	22
12.	Antimicrobial activity of avian -defensins	25
13.	Evolutionary perspective	28
Ш	MATERIAL AND METHODS	31
1.	DNA Isolation, PCR	31
2.	The Sequencing	32
2.1	Sequencing Reaction	32
2.2.	DD-Term Program	32
2.3.	Clean-up of Sequencing Reaction	32
2.4.	Sequencing Analysis	33
IV	RESULTS AND DISCUSSION	37
1.	Sequencing Variation	37
1.1.	Gallinacin-1	37

1.2.	Gallinacin-2	39
1.3.	Gallinacin-3	41
1.4.	Gallincin-4	44
1.5.	Gallinacin-5	46
1.6.	Gallinacin-10	48
2.	SNP detection and its rate	49
3.	SNPs Location	49
3.1.	Intronic SNPS	49
3.2.	Exonic SNPs	50
V	SUMMARY AND CONCLUSION	52
VI	REFERENCES	57
	ARABIC SUMMARY	

LIST OF TABLES

		Page
Table 1.	Comparison of vertebrate defensin sub-families	21
Table 2.	Amino acid sequences of avian and mammalian - defensins.	24
Table 3.	Antimicrobial activity of avian heterophil peptides.	37
Table 4.	Primer sequence of Gal-1 - Gal-5 and Gal-10.	34
Table 5.	Single nucleotide polymorphism in gallinacin 1 in line 6 (resistant to Marek's disease) and line 7 (susceptible to Marek's disease).	37
Table 6.	Single nucleotide polymorphism in gallinacin 2 in line 6 (resistant to Marek's disease) and line 7 (susceptible to Marek's disease).	39
Table 7.	Single nucleotide polymorphism in gallinacin 3 in line 6 (resistant to Marek's disease) and line 7 (susceptible to Marek's disease).	42
Table 8.	Single nucleotide polymorphism in gallinacin 4 in line 6 (resistant to Marek's disease) and line 7 (susceptible to Marek's disease).	44
Table 9.	Single nucleotide polymorphism in gallinacin 5 in line 6 (resistant to Marek's disease) and line 7 (susceptible to Marek's disease).	46

LIST OF FIGURES

Fig		Page
1	Evolutionary tree of existing -defensins. A phylogeny relationship between avian, bovine, pig, mouse, rhesus monkey, and human b-defensins based on amino acid sequence homology.	30
2	Amplified fragment of gallinacin genes (1-13) in inbred White Leghorn line 6 sub line 3. Lane M, DNA molecular weight marker. Lane 1-13, Gal-1- Gal-13.	35
3	Amplified fragment of gallinacin genes (1-13) in inbred White Leghorn line 7 sub line 2. Lane M, DNA molecular weight marker. Lane 1-13, Gal-1- Gal-13.	36
4	CLUSTAL 2.0.12 Multiple sequence alignment of gallinacin 1 between line 6 (resistance line) and line 7(susceptible line).	38
5	CLUSTAL 2.0.12 Multiple sequence alignment of gallinacin 2 between line 6 (resistance line) and line 7(susceptible line).	40
6	CLUSTAL 2.0.12 Multiple sequence alignment of gallinacin 3 between line 6 (resistance line) and line 7(susceptible line).	43
7	CLUSTAL 2.0.12 Multiple sequence alignment of gallinacin 4 between line 6 (resistance line) and line 7(susceptible line).	45
8	CLUSTAL 2.0.12 Multiple sequence alignment of gallinacin 5 between line 6 (resistance line) and line 7(susceptible line).	47
9	CLUSTAL 2.0.12 Multiple sequence alignment of gallinacin 10 between line 6 (resistance line) and line 7 (susceptible line)	48

LIST OF ABBREVIATIONS

A Adenine

ADOL Avian Disease and Oncology Laboratory

AFLP Amplified Fragment Length Polymorphism

ALV Avian Leukosis Virus

AMP Antimicrobial Peptide

BNBD Bovine Neutrophil -Defensins

Bp Base Pair Cytosine

cDNA Complementary DNA

CHP Chicken Embryo Fibroblast
Chicken Heterophil Peptides

DNA Deoxy Nucleic Acid
E.coli Escherichia Coli

EBV Epstein- Barr Virus

ED 18 Embryonic Date 18
EST Expressed Sequence

EST Expressed Sequence Tag

FAO Food and Agriculture Organization

G Guanine

Gal Gallinacin

GH Growth Hormone

GPV Gallopavin

HIV Human immunodeficiency virus

HSV Herpes Simplex Virus

HVT Turkey Herpesvirus

IBDV Infectious Bursal Disease Virus

Line 6 MD Resistant Line
Line 7 MD susceptible Line

MAS Marker Assisted Selection

MD Marek's Disease

MDV Marek's Disease Virus

MHC Major Histocompatibility Complex

MI Michigan State

MIV Multivalent *in vo* vaccine

NDV Newcastle Disease Virus

OSP Ostricacin From Ostrich

PCR Polymerase Chain Reaction

QTL Quantitative Trait Loci

RAPD Randomly Amplified Polymorphic DNA

REFLP Restriction Fragment Length Polymorphism

REV Recombinant Fowlpox Virus

RNA Ribo nucleic Acid

RNP Rabbit Neutrophil Peptide
RPV Reticuloendothelioss Virus

SCA 2 Stem Cell Antigen 2

SIFT Sorting Intolerant from Tolerant

SNP Single Nucleotide Polymorphism

SSCP Single Strand Conformation Polymorphism

T Thymine

THP Turkey Heterophil Peptide
TSA1 Thymic Shared Antigen 1

USDA United States Department of Agriculture

VZV Varicella-Zoster Virus

-Defensins-DefensinsBeta- Defensins

-Defensins Ceuta Defensins

I. INTRODUCTION

Global production of chickens has experienced massive change and growth over the past 50 years. The commercial broiler and layer markets produce more than 50 billion birds annually to meet current worldwide consumer demands of more than 74 million metric tons of meat and more than 66 million metric tons of eggs. In fact, poultry has become the leading meat consumed in the United States and most other countries and is the most dynamic animal commodity in the world; production has increased by 436% since 1970, more than 2.3 times and 7.5 times the corresponding growth in swine and beef, respectively (http://faostat.fao.org). Unfortunately, the poultry industry continues to be confronted with new and emerging infectious diseases such as Newcastle disease, avian leucosis, avian influenza and Marek's disease that can led to significant economic losses.

Marek's disease (MD) is a lymphoproliferative disease, caused by a member of the herpesvirus family, that is estimated to cost the poultry industry nearly \$1 billion annually. Diseased chickens infected by the Marek's disease virus (MDV), the causative pathogen, commonly exhibit paralysis, blindness, and visible lymphoid tumors that result in condemnation of the birds. Although vaccination programs have effectively reduced the incidence of MD, there is evidence that current vaccines do not protect well against some highly pathogenic MDV strains that have emerged in recent years, Also, MD vaccines control rather than eliminate losses from MD because they do not block MDV infection, thus as a result, MDV is ubiquitous on poultry farms, and all chickens are exposed to the pathogenic agent at 1 day of age.

All these factors point to the need to complement vaccinal protection with alternative methods such as genetic resistance and even if a specific disease has been controlled through vaccination, genetic resistance is of value because it represents a safeguard against heavy losses in the case of disease outbreaks.

One such class of genes that may play a role in resistance to Marek's disease are gallinacin genes, one family of antimicrobial peptides (AMP). Antimicrobial peptides (AMP) are relatively small molecules that are less than 100

amino acids in length and have a broad spectrum of antimicrobial activity (Ma et al., 2008).

The main objectives of this study is

- 1. To screen candidate (gallinacin genes) in the inbred White Leghorn Lines 6 subline 3 (6_3) and 7 subline 2 (7_2), which are Marek's disease resistant and susceptible, respectively.
- 2. To predict whether an amino acid substitution in a protein will have a phenotypic effect on Marek's disease.

II. REVIEW OF LITERATURE

1. Overview of immune system

The immune system provides protection against infectious diseases that are caused by various microorganisms including viruses, bacteria, pathogenic fungi and parasites, and can be broadly divided into two categories namely the innate or non-specific immune system and the acquired or specific immune system. Innate immunity is the basic defense mechanism for an animal provided by non-discriminatory barriers of anatomic, physiologic, endocytic and phagocytic and inflammatory mechanisms. The acquired immunity is a specialized response against infectious agents, and is characterized by specificity, diversity, memory and self/non-self recognition (Kuby et al., 1997). The effector cells involved in the innate immune response include granulocytes. However, there is not a complete demarcation between these two types of immunities and cells involved in the innate immune response take part in effector actions of the adaptive immune response (Janeway et al., 2001).

2. Genetic markers in the chicken

The majority of genetic markers for chicken are molecular DNA-based markers. The DNA markers are of two types: within genes (Type I) or anonymous DNA segments (Type II), which include microsatellites, randomly amplified polymorphic DNA (RAPD), amplified fragment length polymorphisms (AFLP), CR1 retrotransposon elements, and others (Emara and Kim, 2003). SNPs are the genetic marker of choice now. The most current SNP "chip" can genotype 60 K markers.

Currently, there are approximately 350 Type I markers present in chicken genes (Groenen et al., 2000). In the past, Type I markers didn't receive extensive applications in QTL mapping due to the laborious RFLP analysis and the limited number of RFLP that were observed within Type I loci. In contrast, the Type II markers have received considerably more attention and they have been the marker of choice for genetic mapping and QTL searches (Emara and Kim, 2003).

In fact, microsatellite markers have been referred to as the "second-generation of markers" for gene mapping studies, whereas the genes are