STEM CELLS AND TISSUE ENGINEERING IN TREATMENT OF PEDIATRIC GASTROINTESTINAL DISORDERS

Essay
Submitted for Partial Fulfillment of Master
Degree In pediatrics

By
Ibrahim Ezz El Regal Shamah
M.B., B.Ch. (2001), Tanta University

Under Supervision of Prof. Dr. Hoda Lotfy Elsayed

Professor of Pediatrics Faculty of Medicine Ain Shams University

Dr. Marwa Talaat Eldeeb

Lecturer of Pediatrics Faculty of Medicine Ain Shams University

Faculty of Medicine Ain Shams University 2010

ACKNOWLEDGEMENT

First, I have to express my sincere thanks to our merciful, and great Allah, as without his support, I wouldn't have achieve anything, and I hope this work will be accepted.

I would like to express my deepest gratitude, respects and thanks to *Professor Doctor Hoda Lotfy Elsayed*, Professor of Pediatrics, Faculty of Medicine, Ain Shams University, for great support, valuable assistance and constant encouragement.

I would also like to express my sincere feelings of gratitude and thanks to *Doctor Marwa Talaat Eldeeb*, Lecturer of Pediatrics, Faculty of Medicine, Ain Shamas University, for devoting a lot of precious time, her continuous supervision, effort and guidance.

Also, my deepest gratitude to my family specially my parents for their great assistance, effort, help and support who didn't save time or effort to help me.

Finally, I can't forget my wife, my daughter *Mennah*, and my son *Ahmed*, my God bless them and keep them safe to me.

List of contents

Subject	Page	
1-Acknowledgement		
2-List of contents		
3-List of tables		
4-List of figures	iii	
5-List of abbreviation		
6-Introduction and aim of the work	1	
7-Stem cells (definition, characteristics and		
classification)	6	
8-Embryonic stem cells	17	
9-Fetal stem cells	33	
10-Neonatal stem cells	36	
11-Adult stem cells:	41	
 Hematopoietic stem cells 	45	
Mesenchymal stem cells	61	
o Gastrointestinal stem cells	66	
12-Stem cells as a therapeutic treatment option		
13Pediatric Gastrointestinal Disorders Where Stem	94	
cells show promise:	94	
i. Inflammatory bowel syndrome	111	
ii. Celiac disease	123	
iii. Necrotizing entrocolitis		
iv. Hirschsprung disease	135	
v. Short bowel syndrome	147	
14-Summary		
15-Referances		
16-Arabic Summary		

List of Tables

Table No.	Title	Page
Table 1	Properties of ES cells	32
Table 2	Properties of Adult SCs	44
Table 3	Disease commonly treated with HSCs transplantation	53
Table 4	Celiac disease's clinical manifestations	116

List of Figures

Figure number	Title	Page
Figure 1	Origin of stem cells	9
Figure 2	Stem cells can be derived from embryonic, fetal, neonatal, and adult tissues	16
E: 2		10
Figure 3	Methods to reprogram adult human cells	20
Figure 4	Schematic diagram showing the possible differentiation pathways of ESCs	27
Figure 5	Hematopoietic and Stromal stem cell differentiation	43
Figure 6	Mesenchymal stem cells common sources and multiliniage differentiation .	65
Figure 7	Schematic view of a Crypt of Lieberkuhn	70
Figure 8	Putative intestinal stem cell niche	73
Figure 9	Diagrammatic representation of the gastric unit or gland	76
Figure 10	Diagram summarizing the origin and differentiation program of parietal cells	78
Figure 11	Stem Cell Paracrine Properties	88

Figure 12	Schematic representation of normal and IBD mucosal tissues	96
Figure 13	Pathophysiology of necrotizing enterocolitis	126
Figure 14	Different populations of stem cells as cell-based therapies for disorders of ENS	147
Figure 15	Schematic illustration of the processes involved in intestinal tissue engineering and some of the possible for uses for the engineered	160

List of Abbreviations

AEA Anti-endomysial.

AFS Amniotic fluid stem. **AGA** Antigliadin antibodies.

APC Adenomatous polyposis coli

ASC Adult stem cell. **ASCs** Adult stem cells.

ASCA Anti-Saccharomyces cerevisiae antibody

bFGF Basic fibroblast growth factor.

BM Bone marrow.

BM-SC Bone marrow-derived stem cell.

BMP Bone morphogenic protein. CD Cluster of differentiation.

CDAI Chrohn's Disease Activity Index.

CNS Central nervous system.

CD Crohn's disease Cy Cyclophosphamide

DCAMKL-1 Doublecortin and Ca M kinase-like-1

EB Embryoid body.

ECL Entero-chromaffin-like

EG **Embryonic germ**

EGF Epidermal growth factor.

EGFR Epidermal growth factor receptor.

ENS Enteric nervous system. **ENSC** Enteric neural stem cell.

ES **Embryonic stem**

ESC Embryonic stem cell. **ESCs** Embryonic stem cells. epiSC Epiblast stem cell.

FACS Fluorescent activated cell sorting FGF Fibroblast growth factor.

FSCs Fetal stem cells.

G-CSF Granulocyte- colony stimulating factor

GISCs Gastrointestinal stem cells.
GLP-2 Glucagon-like peptide-2

GM-CSF Granulocyte-macrophage- colony stimulating factor.
G-MRI Gadolinium-enhanced magnetic resonance imaging

GVHD Graft-versus-host-disease.
GVL Graft versus leukemia.
HGF Hepatocyte growth factor.
HLA Human leukocytic antigen.
HSC Hematopoietic stem cell.
HSCs Hematopoietic stem cells.
HSCR Hirschsprung disease.

HSCT Hematopoietic stem cell transplantation.

IBD Inflammatory bowel disease.

ICM Inner cell mass.

I-FABP Fatty acid binding protein in the intestine.

IGF Insulin like growth factor.

IGFBPs Insulin like growth factor binding proteins.

Ihh Indian hedgehog.
IL-3 Interleukin-3.
IL-6 Interleukin-6.
IL-8 Interleukin-8.

iPS Induced pluripotent stem.

ISCs Intestinal stem cells.

IVF In vitro fertilization.

KGF Keratinocyte growth factor.

L-FABP Fatty acid binding protein in the liver.

Lgr5 Leucine-rich-repeat-containing G-protein-coupled

receptor 5.

LIF Leukemia inhibitory factor.

ME Middle Eastern.

MEF Mouse embryonic fibroblast.
MEFs Mouse embryonic fibroblasts.

MHC Major histocompatibility antigens.

MNCF Mononuclear cell fraction.

MSC Mesenchymal stem cell.

MSCs Mesenchymal stem cells.

NA North African.

NC Nack cell.

NEC Necrotizing enterocolitis.

NESC Neuroepithelial stem cells.

NK Natural killer.

NLB Neurosphere like body.

NSC Neural stem cell.

OmpC Escherichia coli outer membrane-porin.

pANCA perinuclear antineutrophil cytoplasmic antibodies

PBSC Peripheral blood stem cells.

PC Parietal cell.

PN Parenteral nutrition.
PSC Pluripotent stem cell.

PTEN P-phosphatase and tensin homologue.

RCD Refractory Celiac Disease.

SC Stem cell.

SBS Short bowel syndrome.

SCNT Somatic cell nuclear transfer.
SCT Stem cell transplantation.
SIS Small intestinal submucosa.

TBI Total body irradiation.

TGF- β Transforming growth factor – β .

Th1 T helper cell 1

Th2 T helper 2

TNF Tumour necrosis factor. tTG Tissue transglutaminase.

UC Ulcerative colitis.

UCB Umbilical cord blood.

VEGF Vascular endothelial growth factor.

VLBW Very low birth weight.

WJMSCs Wharton's jelly mesenchymal stem cells.

ZCs Zymogenic cells.

Introduction

The human body comprises over 200 different cell types that are organized into tissues and organs to provide all the functions required for viability and reproduction. Historically, biologists have been interested primarily in the events that occur prior to birth. The secgond half of the twentieth century was a golden era for developmental biology, since the key regulatory pathways that control specification and morphogenesis of tissues were defined at the molecular level (Arias, 2008).

In recent years, there has been an explosion of interest in stem cells, not just within the scientific and medical communities but also among politicians, religious groups and ethicists. The origins of stem cell research lie in a desire to understand how tissues are maintained in adult life, rather than how different cell types arise in the embryo. An interest in adult tissues fell, historically, within the remit of pathologists and thus tended to be considered in the context of disease, particularly cancer (Watt and Driskell, 2010).

It was appreciated long ago that within a given tissue there is cellular heterogeneity: in some tissues, such as the blood, skin and intestinal epithelium, the differentiated cells have a short lifespan and are unable to self-renew. This led to the concept that such tissues are maintained by stem cells, defined as cells with extensive renewal capacity and the ability to generate daughter cells that undergo further differentiation. Such cells generate only the differentiated lineages appropriate for the tissue in which they reside and are thus referred to as multipotent or unipotent (Watt and Driskell, 2010).

New therapies, based on stem cell transplantation or endogenous stem cells, are emerging areas, as is drug discovery. Haematopoietic stem cell transplantation is the oldest stem cell therapy and is the treatment that is most widely available (Austin et al., 2008).

Also, the extensive proliferation and differentiation capacities of stem cells make them optimal for seeding tissue engineered grafts (Satija et al., 2007).

Furthurmore, the release of protective factors (paracrine effects) has also been shown to be beneficial to ischemic tissues (Wang et al., 2008).

Pediatric gastrointestinal disorders such as inflammatory bowel disease (IBD) and necrotizing enterocolitis (NEC) are concerning sources of patient morbidity and mortality within the pediatric community. Medical management of these diseases is often suboptimal, and surgical resection of the diseased intestine may be warranted (Markel et al., 2006).

In any cases, however, surgical resection leaves the patient with an inadequate length of small intestine that precludes normal nutrient and fluid absorption. These patients may therefore require long term parenteral nutritional support due to short bowel syndrome (SBS) (Goulet and Ruemmele, 2006).

Moreover, parenteral nutrition increases the risk for developing parenteral nutrition-associated liver failure (Lloyd and Gabe, 2007).

Research is underway to understand the mechanisms associated with the intestinal ischemia and inflammation, bacterial translocation, sepsis, and organ failure that frequently go hand-in-hand with these disorders (Markel et al., 2008).

Stem cell therapy might protect injured native intestine by promoting neovascularization, while also facilitating intestinal restitution following the removal of the injuring stimulus (Aicher et al., 2007).

There were several reports indicated that bone marrow derived stem cells located in the injured gastrointestinal tract and contributed to its regeneration by differentiating into functional epithelia cells or infusing with the gastrointestinal stem cells. Although the concept of cell-based therapy for various diseases of the gastrointestinal tract is widely accepted,