THYROID GLAND ACTIVITY AND ENERGY UTILIZATION IN BROILER CHICKENS

By

NAFISA AHMED ABD EL- AZEEM SHABAN

B. Sc. Agric. Sc. (Animal Production), Cairo University, 2001 M. Sc. Agric. Sc. (Poultry Physiology), Ain Shams University, 2007

A thesis submitted in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

in

Agricultural Science (Poultry Physiology)

Department of Poultry Production Faculty of Agriculture Ain Shams University

Approval Sheet

THYROID GLAND ACTIVITY AND ENERGY UTILIZATION IN BROILER CHICKENS

By

NAFISA AHMED ABD EL- AZEEM SHABAN

B. Sc. Agric. Sc. (Animal Production), Cairo University, 2001M. Sc. Agric. Sc. (Poultry Physiology), Ain Shams University, 2007

This the	sis for Ph.D. degree has been approved by:
Prof. Dr	. Abd El- Hamid El- Sayed Abd El- Hamid
	Prof. of Poultry Physiology, Faculty of Agriculture
	(Damanhour), Alexandria University
Prof. Dr	. Nematallah Gamal El- Dien Mohamed Ali
	Prof. of Poultry Physiology, Faculty of Agriculture, Ain Shams
	University
Prof. Dr	. Alaa El- Dien Abd El- Salam Hemid
	Prof. of Poultry Nutrition, Faculty of Agriculture, Ain Shams
	University
Prof. Dr	. Ibrahim El- Wardany El- Sayed
	Prof. Emeritus of Poultry Physiology, Faculty of Agriculture
	Ain Shams University

Date of Examination: 2 / 8 / 2010

THYROID GLAND ACTIVITY AND ENERGY UTILIZATION IN BROILER CHICKENS

By

NAFISA AHMED ABD EL- AZEEM SHABAN

B. Sc. Agric. Sc. (Animal Production), Cairo University, 2001 M. Sc. Agric. Sc. (Poultry Physiology), Ain Shams University, 2007

Under the supervision of:

Prof. Dr. Ibrahim El- Wardany El- Sayed

Prof. Emeritus of Poultry Physiology, Department of Poultry Production, Faculty of Agriculture, Ain Shams University (Principal Supervisor)

Prof. Dr. Alaa El- Dien Abd El- Salam Hemid

Prof. of Poultry Nutrition, Department of Poultry Production, Faculty of Agriculture, Ain Shams University

Prof. Dr. Amr Hussein Abd El- Gawad

Research Prof. of Poultry Nutrition, Department of Animal Production, National Research Center

ABSTRACT

NAFISA AHMED ABD EL-AZEEM SHABAN: Thyroid Gland Activity and Energy Utilization in Broiler Chickens. Unpublished Ph.D. Dissertation, Department of Poultry Production, Faculty of Agriculture, Ain Shams University, 2010.

An experiment was conducted to investigate the effect of controlled thyroid gland activity (Hyper or hypothyroidism) on energy utilization in broiler chickens. Two hundred and forty, one-day old, Cobb broiler chicks were distributed into three dietary metabolizable energy (ME) treatment groups (80 chicks each). The first group (E0) was fed the basal diet and considered a control group, the second group (E1) was fed low ME diet (minus 150 kcal/ kg diet) with different thyroidal treatments and the third group (E2) was fed very low ME diet (minus 300 kcal/ kg diet) with thyroidal treatments. Thyroidal treatments were applied at the beginning of the 2nd week, where T0 was a control treatment; two hyperthyroidism groups induced by administration of eltroxin (T1) or calcium iodide (T2), and hypothyroidism group induced by carbimazole administration (T3).

Results showed that administration of calcium iodide could improve the productive performance of broiler chicks under low dietary energy stress conditions. Average body weight, feed intake and feed conversion ratio were significantly improved in hyperthyroidism groups. Thyroidal hormones (T₃, T₄) and their ratio T₃/ T₄ showed considerable changes related to thyroidal treatments. Carbimazole administration significantly decreased total antibodies production. Plasma insulin level and I/ G ratio was significantly decreased in response to low energy diets, however carbimazole administration had the lowest plasma insulin level and I/ G ratio. Calcium iodide administration to E1, E2 chicks groups significantly decreased glucagon level. Moreover, calcium iodide significantly increased ATP, TA and PP while carbimazole significantly decreased ADP, AMP and plasma glucose level. Low and very low

energy diets with thyroidal treatment significantly affected plasma proteins, total lipids, cholesterol, HDL, LDL and triglycerides. Histological examination of thyroid gland, liver and pancreas sections support the productive performance results and reflect the beneficial use of CaI as a safe additive without hazards effect on organs histology. Economical efficiency was enhanced by hyperthyroidal treatments. The present results suggest using of calcium iodide to maximize the utilization of low energy diets, via its modulating action of thyroid gland activity.

Key words: Thyroid activity, energy metabolism, insulin, glucagon, blood metabolites, broiler chicks.

ACKNOWLEDGMENTS

First thanks are due to our merciful "ALLAH" for his continuous help through my study and my life.

I would like to express my deep personal gratitude and sincere appreciation to **Prof. Dr. Ibrahim El- Wardany El- Sayed,** Professor of Poultry Physiology, Department of Poultry Production, Faculty of Agriculture, Ain Shams University, for his supervision, suggesting the problem and for his help in revising the manuscript to be in its final form.

My deep gratitude is extended to **Prof. Dr. Amr Hussein Abd El-Gawad,** Professor of Poultry Nutrition, Department of Animal Production, National Research Center, for his close and continuous supervision, providing the facilities, revising the manuscript and support during this work.

I am extremely grateful to Co- supervisor **Prof. Dr. Alaa El- Dien Abd El- Salam Hemid,** Professor of Poultry Nutrition, Department of Poultry Production, Faculty of Agriculture, Ain Shams University, for his valuable advices, encouragement and kind help during this work.

I wish to express my deepest thanks to Co- supervisor **Dr. Eman** Farag El- Daly, Associate Professor of Poultry Physiology, Department of Animal Production, National Research Center, for her valuable advices, co- operation, encouragement and constant interest throughout this work.

I would like to express my deep thanks to all the staff members of the Department of Poultry Production, Faculty of Agriculture, Ain Shams University and the Department of Animal Production, National Research Center, for their support and kind help.

Finally, I wish to express my deepest appreciation to my friends and all members of my family especially my husband **Dr.**Mohamed Ibrahim Shourrap, Lecturer of Poultry Physiology, Department of Poultry Production, Faculty of Agriculture, Ain Shams University, for continuous support, help and credible encouragement.

CONTENTS

	Page
LIST OF TABLES	IV
LIST OF FIGURES	VI
LIST OF ABBREVIATIONS	IX
INTRODUCTION	1
REVIEW OF LITERATURE	3
1.Physiological effects of thyroid hormones.	3
2.Thyroid gland and energy metabolism.	4
3.Exogenous thyroid hormones.	5
3.1.Effect of exogenous thyroid hormones on growth	5
performance.	
3.1.1.Live body weight.	5
3.1.2.Feed consumption and feed conversion ratio.	7
3.2.Carcass quality.	7
3.3.Immune responses.	8
3.4. Thyroid gland hormones concentration.	8
3.5.Some blood parameters.	11
4.Induction of hyperthyroidism by Iodine.	11
4.1.Effect of Iodine on thyroid gland and its metabolic	11
function.	
4.2.Effect of iodine on growth performance.	13
4.2.1.Live body weight.	13
4.2.2.Feed consumption and feed conversion ratio.	14
4.3. Thyroid gland hormones concentration.	15
4.4. Some blood parameters.	17
5.Iduction of hypothyroidism.	17
5.1.Effect of anti- thyroidal drugs on growth performance.	18
5.1.1.Live body weight.	18
5.1.2.Feed consumption and feed conversion ratio.	22
5.2.Carcass quality.	23

	Page
5.3.Immune responses.	24
5.4.Effect of Goitrogens on thyroid gland hormones	26
concentration.	
5.5.Plasma total protein, albumin and globulin.	31
5.6.Plasma cholesterol and total lipids.	31
5.7.Glucose and pancreatic hormones.	32
MATERIALS AND METHODS	34
1.Experimental procedures.	34
2.Measurements.	37
2.1.Growth performance parameters.	37
2.2.Humoral Immune Response.	37
2.2.1.Immunization and Titration against Newcastle Disease	37
Virus (NDV).	
2.2.2.Preparation of phosphate buffered saline (PBS).	37
2.2.3.Preparation of NDV antigen.	38
2.2.4.Preparation of chicken red blood cells (RBC)	38
suspension.	
2.2.5.Newcastle Disease Virus- hemagglutination inhibition	38
(HI) titers.	
2.3. Carcass characteristics and some organs weight.	39
2.4.Physiological and biochemical parameters:	39
2.4.1.Plasma glucose.	39
2.4.2.Plasma total proteins.	39
2.4.3.Plasma albumin, globulin and A/G ratio.	39
2.4.4.Plasma total lipids, cholesterol and triglycerides.	40
2.4.5.Plasma phosphorus.	40
2.4.6.Plasma thyroxine and triiodothyronine.	40
2.4.7.Plasma insulin.	40
2.4.8.Plasma glucagon.	40
2.4.9.Enzymatic determination of adenosine nucleotides	40
(ATP, ADP and AMP).	

	Page
2.4.10.Adenylate Energy Charge (AEC).	40
3. Histological observations.	41
4. Chemical analysis of carcass.	41
5.Economic efficiency.	41
6.Statistical analysis.	42
RESULTS AND DISCUSSION	43
1. Productive performance of broiler chicks.	43
1. 1. Live body weight (LBW).	43
1. 2. Feed intake (FI).	45
1. 3. Feed conversion ratio (FCR).	45
1. 4. Performance index and production number.	46
2. Relative weights of carcass and some important organs.	46
3. Immune- related organs.	49
4. Humoral immune response of broiler chicks.	51
5. Plasma thyroidal hormones.	55
6. Plasma Insulin and Glucagon levels.	57
7. Plasma Phosphorus, ATP, ADP and AMP levels.	60
8. Total adenylate, adenylate energy charge and phosphate	62
potential levels.	
9. Plasma glucose, total proteins, albumin and globulin levels:	64
10. Plasma total lipids, triglycerides, cholestrol, HDL and	68
LDL levels.	
11. Chemical composition of carcass.	72
12. Histological observations.	74
12. 1. Thyroid histology.	74
12. 2. Liver histology.	79
12. 3. Pancreas histology.	84
13. Economic efficiency.	90
SUMMARY AND CONCLUSION	93
REFERENCES	97
ARABIC SUMMARY	

LIST OF TABLES

Table		Page
1	The experimental treatments.	35
2	Composition and calculated analysis of the experimental diets.	36
3	Effect of different treatments on productive performance of broiler chickens at 6 weeks of age.	44
4	Relative weights (%) of carcass and some organs of broiler chicks at different ages .	47
5	Relative weights(%) of lymphoid organs of broiler chicks at 3 week of age.	50
6	Relative weights(%) of lymphoid organs of broiler chicks at 6 week of age.	52
7	Effect of different treatments on humoral immune response of broiler chicks.	54
8	Plasma triiodothyronine (T_3) and thyroxine (T_4) levels of broiler chickens at 6 weeks of age.	56
9	Plasma insulin and glucagon levels of broiler chickens at 6 weeks of age.	58
10	Plasma phosphorus, ATP, ADP and AMP levels in broiler chicks at 6 weeks of age.	61
11	Total adenylate (TA), adenylate energy charge (AEC) and phosphate potential (PP) levels in broiler chicks at 6 weeks of age.	63
12	Plasma glucose, total proteins, albumin and globulin levels of broiler chicks at 3 weeks of age.	65

Table		Page
13	Plasma glucose, total proteins, albumin and globulin levels of broiler chicks at 6 weeks of age.	67
14	Plasma total lipids, triglycerides, cholestrol, HDL and LDL levels of broiler chicks at 3 weeks of age.	69
15	Plasma total lipids, triglycerides, cholestrol, HDL and LDL levels of broiler chicks at 6 weeks of age.	71
16	Effect of different treatments on chemical composition of broiler carcass.	73
17	Effect of different treatments on economic efficiency of broiler chickens.	91

LIST OF FIGURES

Figure		Page
1	T. S. of thyroid gland from T0- E0 broiler chicks (H&E x 40).	76
2	T. S. of thyroid gland from T1- E0 broiler chicks (H&E x 40).	76
3	T. S. of thyroid gland from T1- E1 broiler chicks (H&E x 40).	76
4	T. S. of thyroid gland from T1- E2 broiler chicks (H&E x 40).	76
5	T. S. of thyroid gland from T2- E0 broiler chicks (H&E x 40).	77
6	T. S. of thyroid gland from T2- E1 broiler chicks (H&E x 40).	77
7	T. S. of thyroid gland from T2- E2 broiler chicks (H&E x 40).	77
8	T. S. of thyroid gland from T3- E0 broiler chicks (H&E x 40).	78
9	T. S. of thyroid gland from T3- E1 broiler chicks (H&E x 40).	78
10	T. S. of thyroid gland from T3- E2 broiler chicks (H&E x 40).	78
11	T. S. of the liver from T0- E0 broiler chicks (H&E x 40).	81
12	T. S. of the liver from T1- E0 broiler chicks (H&E x 40).	81
13	T. S. of the liver from T1- E1 broiler chicks (H&E x 40).	81

Figure		Page
14	T. S. of the liver from T1- E2 broiler chicks (H&E x 40).	81
15	T. S. of the liver from T2- E0 broiler chicks (H&E x 40).	82
16	T. S. of the liver from T2- E1 broiler chicks (H&E x 40).	82
17	T. S. of the liver from T2- E2 broiler chicks (H&E x 40).	82
18	T. S. of the liver from T3- E0 broiler chicks (H&E x 40).	83
19	T. S. of the liver from T3- E1 broiler chicks (H&E x 40).	83
20	T. S. of the liver from T3- E2 broiler chicks (H&E x 40).	83
21	T. S. of the pancreas from T0- E0 broiler chicks (H&E x 40).	87
22	T. S. of the pancreas from T1- E0 broiler chicks (H&E x 40).	87
23	T. S. of the pancreas from T1- E1 broiler chicks (H&E x 40).	87
24	T. S. of the pancreas from T1- E2 broiler chicks (H&E x 40).	87
25	T. S. of the pancreas from T2- E0 broiler chicks (H&E x 40).	88
26	T. S. of the pancreas from T2- E1 broiler chicks (H&E x 40).	88

VIII

Figure		Page
27	T. S. of the pancreas from T2- E2 broiler chicks (H&E x 40).	88
28	T. S. of the pancreas from T3- E0 broiler chicks (H&E x 40).	89
29	T. S. of the pancreas from T3- E1 broiler chicks (H&E x 40).	89
30	T. S. of the pancreas from T3- E2 broiler chicks (H&E x 40).	89

LIST OF ABBREVIATIONS

A : Alpha islets

ac : Pancreatic acini

A/G : Albumin to Globulin ratio

ADP: Adenosine diphosphate

AEC: Adenylate Energy Charge **AMP**: Adenosine monophosphate

ATP : Adenosine triphosphate

b : Bile duct

B : Beta islets

BMR: Basal metabolic rate

Bv : Blood vessels

BWG : Body weight gain

c : Colloid

°C : The degree Celsius (Centigrade)

CaI : Calcium iodide

CP : Crude Protein

ct : Connective tissue

cv : Central vein

d : day

e : Epithelial linning

E0 : Control diet

E1 : Low ME level (minus 150 kcal/ kg diet)

E2 : Very low ME level (minus 300 kcal/ kg diet)

EE : Ether extract

EI : Energy intake

f : Thyroid follicles

fa : Fatty cirrhosis area

FCR : Feed conversion ratio

FI : Feed intake

Fig : Figure