ROLE OF DIFFUSION AND SPECTROSCOPY MR IMAGING IN DIAGNOSIS OF BREAST CANCER

Essay

Submitted for Partial Fulfillment of Master Degree In Radiodiagnosis

By

Dina Adel Amin Abdel Aziz M.B., B.CH.

Faculty of medicine Alexandria University

Under Supervision of

Prof. Dr. Khalid Esmat Allam

Professor of Radiodiagnosis
Faculty of Medicine
Ain Shams University

Dr. Hossam Moussa Sakr

Lecturer of Radiodiagnosis Faculty of Medicine Ain Shams University

Faculty of Medicin
Ain- Shams University
2010

Acknowledgement

First and foremost, I feel always indebted to **Allah**, the Most Kind and Most Merciful.

I'd like to express my respectful thanks and profound gratitude to **Prof. Dr. Khalid Esmat Allam,** Professor of Radiodiagnosis, Faculty of Medicine Ain Shams University, for giving me the honor and great advantage of working under his supervision, valuable teaching and the continuous education extended to me beyond the limits of this thesis. My sincere thanks and utmost appreciation are humbly presented to **Dr. Hossam Moussa Sakr,** Lecturer of

Of Radiodiagnosis, Faculty of Medicine, Ain Shams University, for her meticulous supervision, professional experience and tremendous assistance. It has been a long trip with her in my career. I really appreciate her patience and support.

My deepest gratitude I extend to my whole family who offered me support, advice and motivation.

Contents

Title	Page
1. Introduction	1
2. Aim of the Work	4
3.Anatomy of the Female Breast	5
A. Gross Anatomy	6
B. MRI Anatomy	18
4. Pathology of Breast Cancer	22
5. Techniques of Diffusion and Spe	ectroscopy
MR Imaging of the Breast	39
6. Findings of Breast cancer by MR I	Diffusion &
Spectroscopy	77
7 .Discussion	103
8. Summary & Conclusion	110
9. References	115
10 .Arabic summary	

List of Abbreviations

ADC The apparent diffusion coefficient (ADC)

ACR American College of Radiology

ALND Axillary lymph node dissection

BI-RADS Breast imaging reporting and data system

CE Contrast-enhanced

CM Contrast material

CSI Chemical shift imaging

DCE-MR Dynamic contrast enhanced magnetic resonance

DCIS Ductal carcinoma in situ

DTPA Diethylene triamine penta acetic acid

DWI Diffusion weighted imaging

EIC Extensive intraductal component

FA Flip angle

FOV Field of view

Gd Gadolinium

Gd-DTPA Gadolinium-DTPA

GE Gradient echo

HPF High-power field

HR High-resolution

IDC Invasive ductal carcinoma

LCIS Lobular carcinoma in situ

LN Lymph node

Ms Millisecond

MIP Maximum intensity projection

MPR Multiplanar reconstruction

MR Magnetic resonance

MRI Magnetic resonance imaging

MRS Magnetic resonance spectroscopy

Post-CM After contrast administration

Pre-CM Before contrast administration

PRESS Point-resolved spectroscopy

ROI Region of interest

SS-EPI Single shot-EPI (SS-EPI)).

S/N Signal –to –noise ratio

STEAM Stimulated echo acquisition mode

SUV Standardized update value

Tesla (unit of magnetic field strength)

T1-WI T1-weighted image

T2-WI T2-weighted image

TDLU Terminal ductal lobular unit

TNM Tumor-node-metastasis staging system

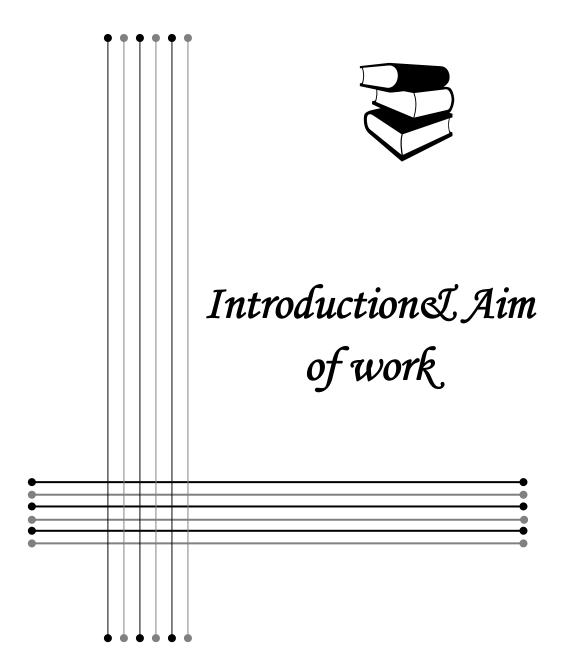
US Ultrasound

VOI Volume of interest

WHO World health organization

List of Figures

Fig. No	Title	Page
1 Anatomy	y of the breast	7
2 Arterial	blood supply and venous drainage of the breast.	13
3 Lymphat	tic drainage of the breast	16
4 T1-Weig	ghted & T2-Weighted image	19
5 The axill	lary's lymph nodes show bright enhancement	20
6 Benefit o	of subtraction imaging	44
7 High tem	nporal versus high spatial resolution images	45
8 Left brea	ast axial images	47
9 Old fema	ale with infiltrating ductal carcinoma	52
10 Response	se to chemotherapy demonstrated by MRI	53
11 ADC maj	aps for different breast lesions	55
12 Signal int	tensity of breast cancer plotted against b-factor	57
13 MRI and	d MRS measurements for invasive ductal	
carcinon	na	62
14 Single-v	voxel spectra of breast cancer	70
15 Single-v	voxel spectrum with lipid suppression	71
16 A contra	ast-enhanced high-resolution image	72
17 A contra	ast-enhanced high-resolution image enhancing	
Tumor		74


List of Figures

(continued)

Fig.	. No Title	Page)
18	Transverse MPR image of high-re	esolution imaging76	
19	MR images acquired in a patient	with a malignant breast	
	Lesion	81	
20	MR images of a normal subject w	vith an incidental cyst82	2
21	A case of invasive ductal carcino	ma86	5
22	Images of fibro adenoma & noni	nvasive cancer8	7
23	Proton MRI and MRSI of a 41-ye	ear-old patient98	3
24	Precontrast T1weighted& digital	MR image99	9
25	Proton MRI and MRSI in an old j	patient with benign	
	focal fibrosis	10)0
26	Proton MRI and MRSI in old patic	ent with a fibro adenoma 10)1

List of Tables

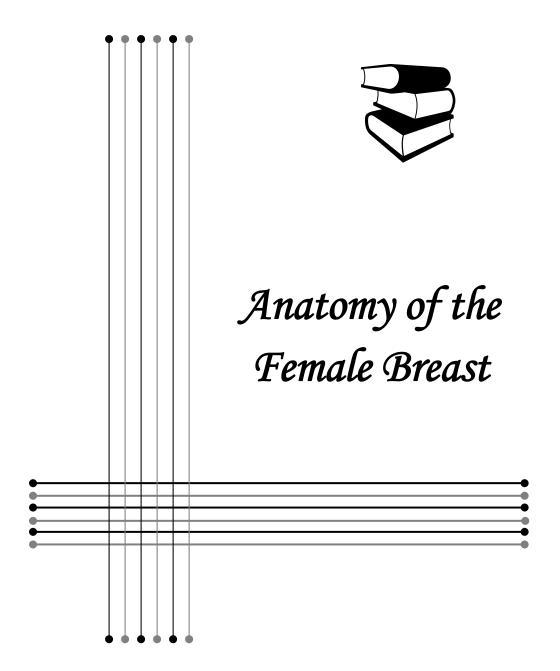
TABLE. No Page	
1. TNM Staging System for Breast Cance35	
2. TNM Stage Grouping for Breast Cancer	
3. BIRADS Scores38	
4. Indications for breast MRI48	
5. Risk Populations Considered for Breast MRI50	
6. Percentage of Cancers Detected in Contra lateral Breast of	
Women Newly Diagnosed with Breast Cancers51	
7. Patient Demographics, Lesion Size, MR Contrast	
Enhancement, MRSI Choline SNR, and Histopathology	
Results96	

INTRODUCTION

Breast cancer is most prevalent and is the leading cause of cancer related deaths among women worldwide (*Greenlee et al. 2001; NRCP 2001*).

Recent advances in MRI have shown the potential in bridging the gap between sensitivity and specificity. Methods based on differences in physiological ,cellular and biochemical characteristics of malignant, benign and normal tissues were developed to monitor changes in diffusion(Woodhams et al. 2005; Manton et al. 2006 and Yankeelov et al. 2007), perfusion, tissue elasticity (Sinkus et al. 2007) and metabolic activity (Cecilet al. 2001; Yeung et al. 2001).

Application of diffusion weighted imaging (DWI) in differentiating malignant and benign breast tissues (*Woodhams et al.* 2005) as well as in monitoring the treatment response were reported(*Manton et al.* 2006; *Yankeelovet al.* 2007 and *Sharma et al.* 2008). For unambiguous and early diagnosis of breast cancer with high specificity, it is desirable to have a standardized protocol with a combination of techniques.

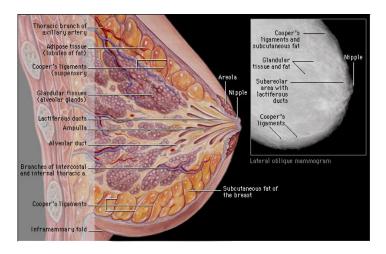

Various methods discussed above provide wealth of information on tumor anatomy and physiology, however, an insight into the underlying biochemical processes associated with tumor progression and regression could be achieved through the use of in-vivo magnetic resonancespectroscopy (MRS). In addition, information on

the alterations of metabolic pathways during disease processes by detection and quantification of metabolites could be obtained. Several centers have begun to supplement breast MRI studies with MRS to increase the specificity. To distinguish cancer from benign and normal breast tissues, the presence of composite choline (tCho) signal observed in proton (1H) MRS was used (*Cecil et al.* 2001; *Yeung et al.* 2001) and is shown to increase the specificity of diagnosis.

The specificity of MRS was reported to be around 88%,however, the poor sensitivity and requirement of slightly larger lesion to detect a tCho signal is one of the limitations. The ability of MRS to follow the metabolic profile of malignant cells before, during, and after drug treatment also helps in predicting the response of the tumor to treatment. The present review focuses certain aspects of the development of breast MR imaging and spectroscopy. The continual efforts made to improve the specificity of MR in diagnosis, and the assessment for screening, are also presented here.

Aim of the Work:

To assess the role of Diffusion and Spectroscopy MR imaging in cancer Breast.



Anatomy of the Female Breast Gross Anatomy:

The breast is a modified, differentiated apocrine sweat gland with a functional purpose of secreting milk during lactation. It is located in the superficial tissues of the anterior chest wall. The surface of the breast is dominated by the nipple and the surrounding areola (*Glenn*, 2001).

The mature breast has an eccentric configuration, with the long axis diagonally placed on the chest wall largely over the pectoralis major muscle and extending into the axilla. The peripheral anatomic boundaries of the breast are not precisely defined, except at the deep surface where the gland overlies the pectoralis fascia. Superficially, the breast extends over portions of the serratus anterior muscle, inferiorly over the external oblique muscle and superior rectus sheath, and medially to sternum (*Rosen*, 2001).

The protuberant part of the human breast is generally described as overlying the second to the sixth ribs, and extending from the lateral border of the sternum to the anterior axillary line. Actually, a thin layer of mammary tissue extends considerably farther from the clavicle above to the seventh or eighth ribs below and from the midline to the edge of latissimus dorsi muscle posteriorly (*Russell et al.*, 2000).

(Fig.1): Anatomy of the breast (Quoted from Moore et al., 1999)

The axillary tail

The axillary tail of the breast (tail of Spence) is a breast extension towards the lateral margin of the chest and into the axilla. It has a duct, which drains into the ductal system of the major gland. In some normal cases it is palpable, and in a few it can be seen premenstrually or during lactation. A well-developed axillary tail is sometimes mistaken for a mass of enlarged lymph nodes or a lipoma (*Hendriks et al.*, 2002.)

The internal structure of the mammary gland

The normal adult female breast (**Fig.1**) is composed of an admixture of epithelial and stromal elements with variable adipose tissue typically present in the interlobular stroma, and not amongst the lobules. The epithelial elements are glandular tissue or tubulo-alveolar type consisting or a series or branching ducts which connects the structural and functional units of the breast, the lobules, to the nipple. The stroma is