New trends in diagnosis and treatments of Arnold Chiari Malformations

An essay
Submitted for the partial fulfillment of master degree in
General surgery

By

Bishoy Nagy Aneys M.B.B.CH, 2003

Supervised by

Prof. Dr. Ayman Ahmed Al Baghdady

Prof. of Pediatric Surgery

Faculty of Medicine Ain shams University

DR. Hesham Mohamed Abd El Kader

Lecturer of Pediatric Surgery

Faculty of Medicine Ain shams University

Faculty of medicine Ain shams University 2010

Acknowledgments

First and foremost thanks to God.

I have been honored and privileged to have worked under the supervision of such distinguished and eminent doctors.

I would like to express my deepest gratitude to PROF. DR. \ Ayman Ahmed Al Baghdady Professor of Pediatric Surgery, Faculty of Medicine, Ain Shams University who had patiently supervised this work. It has been pleasure to precede this research under his supervision and guidance. No words can express what I owe him for his endless patience and continuous advice and support.

I wish to express my thanks to DR.\ Hesham Mohamed Abd EL Kader Lecturer of Pediatric Surgery, Faculty of Medicine, Ain Shams University for his kind assistance and support.

List of Abbreviations

CSF : Cerebrospinal fluid

ICP : Intracranial pressure

ISF : Interstitial fluid

MRI : Magnetic resonant imaging

CMI : Chiari malformation type I

CM II : Chiari malformation type II

CM III : Chiari malformation type III

CM VI : Chiari malformation type VI

CT : Computed tomography

CAT : Computerized axial tomography

ACM : Arnold Chiari malformation

ICP : Intra cranial pressure

NTD : Neural tube defects

 \mathbf{AFP} : alpha fetoprotein

DSA : Digital subtraction angiography

VP : Ventriculoperitoneal

List of Figures

Figure (1)	Hans Chiari (1851 – 1916).	7
Figure (2)	University of Heidelberg physicians, Arnold at lower left.	10
Figure (3)	Boundaries of posterior fossa.	15
Figure (4)	The Tentorial Surface.	16
Figure (5)	The fourth ventricle floor.	18
Figure (6)	Boundaries of foramen magnum.	19
Figure (7)	Diagram showing the difference between normal brain and Chiari malformation.	21
Figure (8)	Sagittal T1-weighted MRI of a Chiari 1 malformation.	23
Figure (9)	Sagittal T1-weighted a cranial and b spinal MRI of a Chiari 2 malformation.	26
Figure(10)	Sagittal T1-weighted MR image revealing the peg like appearance of the vermis extending to C-4 in a child with CM II.	27
Figure(11)	Axial T2-weighted MR image obtained in a child with two subependymal heterotopias.	27
Figure(12)	Sagittal T1-weighted MR image obtained in a child with a CM II.	28
Figure(13)	Sagittal T1-weighted MR image of the cervicothoracic spine.	29
Figure(14)	Sagittal T1-weighted MR image obtained in a child with (myelomeningocele and CM II.	30
Figure(15)	One day old boy born with an encephalocele.	31
	hypoplasia of a portion of the cerebellum.	32
<u> </u>	Difference between the 4 chiari types.	34
Figure(18)		
9(/	the cranial and spinal compartments.	37
Figure(19)	Chiari type I malformations diagram.	43
	Chiari type I malformations association with syringomyelia.	43

Figure(21)	Sagittal T1-weighted MR image show	47
	Syringomyelia.	
Figure(22)	Preoperative T2-weighted sagittal magnetic	
	resonance imaging (MRI) scan showing a Chiari	49
	I malformation.	
Figure(23)	Diagram show neural tube defect.	51
Figure(24)	Sagittal MR image obtained in a child with CM II	
	and a large holocord syrinx.	55
Figure(25)	showing a Chiari II malformation, with the	
	brainstem and cerebellum herniated.	55
Figure(26)	skeleton of child with hydrocephalus.	57
Figure(27)	MR image obtained in a child with	58
	hydrocephalus.	
Figure(28)	A typical open spina bifida lesion	60
	(myelomeningocele).	
Figure(29)	A view of a myelomeningocele or spina bifida.	63
Figure(30)	Encephalocele Weighting 2600 Grams.	65
Figure(31)	cerebellar agenesis.	66
Figure(32)	Platybasia.	69
Figure(33)	Lateral radiograph of the skull demonstrating	
	basilar invagination.	70
Figure(34)	Fusion of C1 and C2, as well as C6 and C7.	70
Figure(35)	Sagittal T1-weighted MRI of the brain. The line	
	joining the basion to the opisthion defines the	
	lower limit of posterior cranial fossa and the	
	reference point for measuring tonsillar ectopia	72
Figure(36)	Sagittal T1-weighted MRI of the brain.	
	Anatomic landmarks identified include the	73
	fourth ventricle.	
Figure(37)	Sagittal T1-weighted MRI of the brain. Note the	
	advanced tonsillar ectopia.	73
Figure(38)	Postoperative 3-dimensional computed	
	tomography scan. This image shows osseous	80
	decompression.	
Figure(39)	Antenatal magnetic resonance image shows a	

	Chiari II malformation in a fetus.	81
Figure(40)	Sagittal T2-weighted magnetic resonance in a	
	patient with a Chiari II malformation.	83
Figure(41)	Sagittal sonogram in a patient with a Chiari II	
	malformation .	86
Figure(42)	MRI Scan (Sagittal View) of a young patient with	
	Arnold Chiari Malformation. The Cerebellar	
	Tonsils are "herniated".	87
Figure(43)	an occipito-cervical meningoencephalocele in	88
	embryo.	
Figure(44)	Cerebellar vermis agenesis with cystic	89
	dilatation.	
Figure (45)	Intraoperative photograph of duraplasty	94

CONTENTS

- **4** Introduction and aim of the study.
- **♣** Anatomy of Posterior fossa.
- **♣** Classification.
- **♣** Diagnosis.
- **♣** Management.
- **4** Complication.
- **4** Summary and conclusion.
- **♣** Arabic summary.

Introduction

Arnold-Chiari malformation is a genetic disorder in which parts of the brain are formed abnormally. Malformations may occur in the lower portion of the brain cerebellum or in the brain stem (**Spillane**, et al, 2007).

An Austrian pathologist named Arnold-Chiari was the first to describe Arnold-Chiari malformation in 1891. Normally, the brain stem and cerebellum are located in the posterior fossa, an area at the base of the skull attached to the spinal cord. In Arnold-Chiari malformation, the posterior fossa does not form properly. Because the posterior fossa is small, the brain stem, cerebellum, or cerebellar brain tissues called the cerebellar tonsils are squeezed downward through an opening at the bottom of the skull. The cerebellum and/or the brain stem may extend beyond the skull or protrude into the spinal column. The displaced tissues may obstruct the flow of cerebrospinal fluid (CSF), the substance that flows around the brain and spinal cord. (Pillay, et al, 2007).

Although this malformation is present at birth, there may not be any symptoms of a problem until adulthood. For this reason, Arnold-Chiari malformation is often not diagnosed until adulthood. Women have a higher incidence of this disorder than men (**Rengachary**, et al, 2006).

Other names for Arnold-Chiari malformation are Arnold-Chiari syndrome, herniation of the cerebellar tonsils, and cerebellomedullary malformation syndrome. When doctors diagnose Arnold-Chiari malformation, they classify the malformation by its severity. An Arnold-Chiari I malformation is the least severe. In an Arnold-Chiari I malformation, the brain extends into the spinal canal. Doctors measure the length of brain stem located in the spinal canal to further define the malformation (**Rhoton**, 2004).

A type II malformation is more severe than a type I. It is almost always linked with a type of spina bifida. A sac protrudes through an abnormal opening in the spinal column. The sac is called a myelomeningocele. It may be filled with part of the spinal cord, spinal membranes, or spinal fluid. Unlike many cases of Arnold-Chiari I malformation, Arnold-Chiari II malformation is diagnosed in childhood. Doctors have identified Arnold-Chiari III and IV malformations, but they are very rare (Saez, et al, 2008).

Arnold-Chiari malformations may occur with other conditions. There may be excessive fluid in the brain (hydrocephalus), opening in the spine(spina bifida) or excessive fluid in the spinal cord (syringomyelia), but many people with Arnold-Chiari malformations do not have other medical problems (**Tobin and Sencer**, **2003**).

Scientists do not know what causes Arnold-Chiari malformations. One hypothesis is that the base of the skull is too small, forcing the cerebellum downward. Another theory focuses on overgrowth in the cerebellar region. The overgrowth pushes the cerebellum downward into the spinal canal (**Tokime, et al, 2008**).

Some people with Arnold-Chiari I malformations have no symptoms. Typically, with an Arnold-Chiari I malformation symptoms appear as the person reaches the third or fourth decade of life. Symptoms of this disorder vary. Most symptoms arise from the pressure on the cranial nerves or brain stem. The symptoms may be vague or they may resemble symptoms of other medical problems, so diagnosis may be delayed (Walsh, et al, 2006).

One of the most common symptoms of Arnold-Chiari malformations is a headache. The headache generally begins in the neck or base of the skull and may radiate through the back of the head. Coughing, sneezing, or bending forward may bring on these headaches. The headaches can last minutes or hours and may be linked with nausea (Swanson and Fincher, 2008).

There may be pain in the neck or upper arm with Arnold-Chiari malformations. Patients often report more pain on one side, rather than equal pain on both sides. There may also be weakness in the arm or hand. Patients may also report tingling, burning, numbness, or pins and needles. Balance can be affected as well. A person may be unsteady on their feet or lean to one side (Walsh, et al, 2006).

Some people with Arnold-Chiari malformation may have difficulty in swallowing. They may say that food 'catches' in their throat when they swallow. Another common complaint linked with Arnold-Chiari malformations is hoarseness (**Stovner**, et al, 2006).

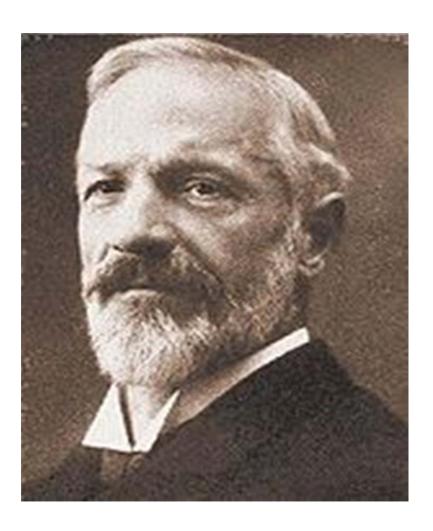
People with Arnold-Chiari malformations may have visual problems, including blurred vision, double vision, or blind spots. There may be bobbing of the eyes (Wolpert, et al, 2005).

An Arnold-Chiari malformation is diagnosed with magnetic resonance imaging (MRI). An MRI uses magnetism and radio waves to produce a picture of the brain and show the crowding of the space between the brain and spinal cord that occurs with Arnold-Chiari malformations. In addition to an MRI, patients will also have a thorough neurologic examination (**Tokime**, et al, 2008).

Individuals who begin to experience symptoms from an Arnold-Chiari malformation are usually first seen by their primary care physician, who may send them on to a neurologist for further evaluation. If the patient is deemed to require surgery, a neurosurgeon will be consulted (Walsh, et al, 2006).

The recommended treatment for an Arnold-Chiari I malformation is surgery to relieve the pressure on the cerebellar area. During the surgery, the surgeon removes a small part of the bone at the base of skull. This enlarges and decompresses the posterior fossa. This opening is patched with a piece of natural tissue. In some people with Arnold-Chiari malformation, displaced brain tissue affects the flow of cerebrospinal fluid. Doctors may evaluate the flow of cerebrospinal fluid during surgery for Arnold-Chiari malformation. If they find that brain tissue is blocking the flow of cerebrospinal fluid, they will shrink the brain tissue during surgery (Stovner, et al, 2006).

Individuals who are recovering from surgery to repair an Arnold-Chiari malformation may require physical and/or occupational therapy as they try to regain strength and fine motor control in their arms and hands. A speech therapist may be helpful in improving both speech and swallowing (Wolpert, et al, 2005).


The National Institutes of Health are undertaking several research studies exploring aspects of Arnold-Chiari malformations. Efforts are being made to delineate a possible genetic defect leading to such malformations; studies are further exploring the anatomy and physiology of the malformations; and comparisons of the efficacy of various surgical treatments are being made (Swanson and Fincher, 2008).

Long-term prognosis for persons with Arnold-Chiari I malformations is excellent. Full recovery from surgery may take several months. During that time, patients may continue to experience some of the symptoms associated with Arnold-Chiari malformations (**Stovner**, et al, 2006).

Prognosis for Arnold-Chiari II a malformation depends on the severity of the myelomeningocele and will be equivalent to that of spina bifida (Wolpert, et al, 2005).

Historical Overview

Hans Chiari (1851 _1916) was born in Vienna, Austria (fig. 1) His father was the famous gynecologist J. B. V. L. Chiari and his brother was the rhino laryngologist Ottokar Chiari. He graduated from medical school in 1875 and became assistant to the Austrian pathologist Karl Rokitansky at the Institute of Pathology in Vienna (Appleby et al, 2005).

(Fig. 1) Hans Chiari (1851 – 1916) (Georg, et al, 2002)