

Environmental Solutions as Main Approach to Sustainable Neighborhood

Applied on New Settlements

A Thesis submitted in the Partial Fulfillment of the Requirement for the Degree of Master of Science in Architecture

By

Sara Abd El Baki Mahmoud Abd El Baki Hamza

Teaching Assistant at Department of Urban Planning and Design Faculty of Engineering-Ain Shams University

Supervised by

Assistant Prof. Ahmed Atef Faggal

Assistant Professor of Architecture Faculty of Engineering-Ain Shams University

Prof. Mohamed A. Salheen

Professor of Urban Planning and Design Faculty of Engineering-Ain Shams University

Environmental Solutions as Main Approach to Sustainable Neighborhood

Applied on New Settlements

A Thesis submitted in the Partial Fulfillment of the Requirement for the Degree of Master of Science in Architecture

By

Sara Abd El Baki Mahmoud Abd El Baki Hamza

Teaching Assistant at Department of Urban Planning and Design Faculty of Engineering-Ain Shams University

Examiners Committee

Signature

Prof. Mohamed Momen Afifi

Professor of Architecture Faculty of Engineering-Cairo University

Prof. Mohamed Ayman Ashour

Professor of Architecture Faculty of Engineering-Ain Shams University

Supervisory Committee

Assistant Prof. Ahmed Atef Faggal

Assistant Professor of Architecture Faculty of Engineering-Ain Shams University

Prof. Mohamed A. Salheen

Professor of Urban Planning and Design Faculty of Engineering-Ain Shams University

Date: .. /.. /2014

Disclaimer

This dissertation is submitted to Ain Shams University for the degree of master of

science in Architecture. The work included in this thesis was carried out by the author

in the Year 2014.

The researcher confirms that the work submitted is his own and that appropriate credit

has been given where reference has been made to the work of others.

Name: Sara Abd El Baki Mahmoud Abd El Baki Hamza

Signature:

Date: / /2014

Acknowledgment

First and Foremost Thanks to God

I would like to express my deepest thanks to Dr. Ahmed Atef; Assistant Professor of Architecture at Faculty of Engineering-Ain Shams University, for his instructive supervision and support. I also wish to express my sincerest thankfulness to Dr. Mohamed A. Salheen; Professor of Urban Planning and Design at Faculty of Engineering-Ain Shams University, for his sincere encouragement and valuable guidance.

I am also greatly thankful to E. / Moataz Abd El Fatah, E. / Mohamed Abd El Mohsen Dardir, E. / Diaa Madkour, Dr. / Ahmed Samy, E. / Mohamed Shafia and Dr. / Samy Afifi, for their help and encouragement at the beginning of the research.

Also, I would like to express my deepest thanks to my friends and colleagues who helped me during the accomplishment of this work, especially E. / Shadwa Negm, E. / Sara Abd El Mageed and E. / Mostafa Mahmoud.

Finally, I would like to thank my family for their help and support through the study.

Dedication

To my supportive Family

Abstract:

Societies faced serious environmental problems locally, regionally, nationally and globally, this is due to the wasteful consumption of the world's resources. All of these problems are already having negative impacts on human health, on the economy and will affect the quality of life today as well as the next generations. Moreover, cities are the focal points and drivers of societal development in all countries. They are responsible for lot of significant environmental challenges, as they are the largest consumers of natural resources and the biggest sources of pollution and greenhouse gas emissions on the planet. Thus, there is a need for a big shift in designing our cities to overcome all of these problems. Starting with the neighborhood design, which it is the beginning of any change in the cities. The actions and the decisions taken on this level are deeply in need to the integration with many variables such as design principles and technological solutions. Hence, this research is mainly attempting to apply the design principles in the sustainable neighborhood.

On the other hand, the rapid urbanization in Egypt is reflected in the increases in the percentage of the total population which is not expected to slow down. To meet these demands for housing, hundreds of integrated residential projects are being constructed all over Cairo's desert. As, the increasing demand on the housing units occurring in Cairo can only be met through horizontal expansion, which provides new cities for the next generations in order to accommodate with the population growth. But actually, with this expansion no regard was given towards the environmental impacts in general and the energy efficiency particularly. Hence, the research discusses the issue of planning future sustainable neighborhood, which fulfil the energy efficiency. It also evaluates the design principles that turn the residential neighborhoods to become selfsustain in order to achieve the concept of the sustainable development strategy. The design principles have been extracted through various literature sources which focusing on the design principles of energy efficiency, besides the practical solutions which have been extracted from the analyzing the different examples of eco-districts. Those principles are then used to evaluate a selected case study, which is one of the best integrated residential projects in Cairo called "AL Rehab City". The results showed that the selected case study does not meet most of the sustainable design principles from the environmental side although it is socially and economically succeeded. This underlines the necessity to develop the design principles and update the current urban planning regulations to achieve energy efficiency in every new residential project.

Summary:

In the last decades, the global changes in the environment have had important impacts on urban areas as well as have a direct close link with the over population of the cities. Simultaneously, decreasing carbon footprint and adapting to climate change are becoming the start of any sustainable development. Thus, there is a need for sustainable neighborhoods which fulfil the future energy efficiency requirements, which they are urban areas depend mainly on their design in applying energy conservation techniques and powered by renewable energy techniques. Those sustainable neighborhoods should also be ecologically designed to enhance the health and quality of life of their inhabitants. As, in the new millennium the important goals are to make all the existing and new urban areas more self-sufficient, sustainable and enjoyable places to live. This goal needs to be taken into consideration some different measures, such as the architecture, urban planning, wastewater disposal, mobility system, as well as energy production and consumption. All of these measures need to be interlocked with one another, in order to reach the overall concept of sustainable development which aiming to decrease the ecological footprint of any built environment.

From another perspective, many cities today are facing the problem of running out of fossil fuels, consequently the future of those cities is becoming limited because there is no longer enough energy to run them. As already it is widely known that, the rate of the energy consumption has become increasingly scarce and more expensive. This means that there is a big need to a preparation for this eventuality to prevent the future crisis in the supplies and demand. On the national level, Egypt is like any other country all over the world, where the scarcity of energy sources represents one of the most challenging issues for its sustainable development. As, it has already faced the problem of the energy crisis and increasing the emissions of greenhouse gases, which arising from the burning of fossil fuels. On the other side, it has been reported that, the residential projects are the main consumer of energy within the built environment. Hence, the research discusses the main design principles that outline energy efficiency in the residential projects in Cairo. It also discusses and evaluates the design principles that turn the neighborhoods to become self-sustain, thus by decreasing the energy consumption as well as use more renewable energy sources. The target mainly depends on reaching the sustainable life for every Egyptian citizen, while decreasing their effect on the environment and also in line with the country's economy.

Those design principles have been extracted through different literature sources which focusing on the design principles of energy efficiency and also through analyzing different practical solutions for national and international projects. After that, the research analysis a case study to evaluate the main principles that affect the development of energy efficient configurations within the recent projects in Cairo. Furthermore, the research draws attention to current urban planning regulations and its close link with the energy efficient design principles. The results show that, there are some deficiencies points in the existing laws, as well as there are also some deficiency points that lack the enforcements of the energy codes and the green laws in the new residential projects in Cairo. In addition to that, the result also shows that there is a pressing need for improving the urban governance and more comprehensive planning, which include system solutions for the environment. Thus, the Egyptian government should presents new programs for supporting sustainable urban development with a main focus on achieving the energy efficiency. The government should also begin the trend of creating strategies for the new cities, taking into consideration that there is a big need to stimulate the development of new good examples that take the new settlements further towards sustainability and can serve as an inspiration and sources of knowledge to others.

Table of Contents:

Acknowledgment	I
Dedication	II
Abstract	
Summary	
Table of Contents	
Table of Figures	
List of Tables	X V I
1. Chapter one: Introduction:	
1.1. Introduction	1
1.2. Research Problem	4
1.3. Research Hypothesis	4
1.4. Research Questions	5
1.5. Research Objectives	5
1.6. Research Methodology	6
1.7. Research Structure	9
1.8. Research Focus	11
1.9. New Settlements	13
1.10. The Aim of the Case Study	15
1.11. Literature Review	15
1.12.Conclusions	17
2. Chapter Two: Sustainable Neighborhood:	
2.1. Introduction	10
2.2. Sustainable Development Plans	
2.3. Neighborhood Scale	
2.4. Defining Neighborhood	23
2.5. Defining Sustainable Neighborhood	24
2.6. Principles of Sustainable Neighborhood	25
2.7. Sustainable Neighborhood Themes	26
2.8. Design Principles of Each Them of Sustainable Neighborhood	29
2.8.1. Land-Use System	29
2.8.2. Mobility System	
2.8.3. Energy Efficiency	
2.8.4. Water Management	
2.8.5. Natural Systems	
2.8.6. Waste Management	41

2.8.7. Materials Conservation	43
2.8.8. Food System	43
2.8.9. Housing	44
2.9. Sustainable Neighborhood Indicators & Assessment Tools	45
1.12.1 Urban Sustainability Indicators	45
1.12.2 Urban Sustainability Assessment tools	48
1.12.3 Differences between Indicators and Assessment tools	55
2.10. Conclusion	57
3. Chapter Three: Energy Efficiency:	
3.1. Introduction	
3.2. Environmental Problems	58
3.3. Importance of Sustainable Energy Plan	61
3.4. Energy Consumption: Techniques of Energy Conservation	
3.4.1 Urban Scale	64
3.4.1.1. Orientation	65
3.4.1.2. Wind Direction and Velocity	68
3.4.1.3 Solar Radiation	70
3.4.1.4. Properties of Exterior Environment	73
3.4.1.5. Water Features	77
3.4.1.6. Block Density	
3.4.1.7. Landscape & Urban Greening	
3.4.1.8. Exterior Block Properties	83
4.4.2. Architectural Scale	85
3.4.2.1. Walls	88
3.4.2.2. Roof & Ceiling	92
3.4.2.3. Daylighting Techniques	96
3.4.2.4. Openings (Windows)	
3.4.2.5. Insulation	108
3.4.2.6. Shading Devices	110
3.4.2.7. Natural Ventilation system	115
3.5. Energy Distribution	121
3.5.1. Transmission and Distribution Systems	122
3.5.2. Smart Communities	124
3.5.2.1. Smart Grid	126
3.5.2.2. Smart Home	
3.5.2.3. Distributed Energy Resources	
3.6. Energy Generation	133
3.6.1. Renewable Energy Generations	133
3.6.2. Forms of Renewable Energy	134

3.6.2.1. Renewable Sources of Heat / Electricity	135
3.6.2.2. Grid Connection (Off Grid / On Grid)	
3.6.2.3. Renewable Sources: Off-Site / On-Site	136
3.7. Energy Codes	145
3.7.1. Examples of Energy Codes	146
3.7.2. Examples of Energy Standards	
3.7.3. Difference between Rating Systems and Energy Cod	
3.8. Conclusion	156
3.9. Checklist for Energy Efficiency	157
4. Chapter Four: Applications:	
4.1. Introduction	
4.2. Model City Case Studies	159
4.3. Selection Criteria of the Examples	160
4.4. BedZED (Sutton, UK)	162
4.5. Masdar City (Abu Dhabi, United Arab Emirates)	
4.6. Wilhelmsburg (Hamburg, Germany)	
4.7. El Gouna (Hurghada, Egypt)	
4.8. Conclusion	
5. Chapter Five: Case Study:	
5.1. Introduction	
5.2. The Analysis Goals	
5.3. Analysis Methodology	
5.4. Summary of the Existing Conditions	
5.5. Observation on Al Rehab Case Study	
5.6. The Specific Research Study Area	
5.7. Conclusion	
5.8. Comparison between the Existing Situation and the Propo	
6. Chapter Six: Conclusions:	
6.1. The Conclusions and Recommendations from the Researc	h273
6.2. Implementation on the Egyptian New Settlements	
6.3. Recommendations for Further Researches	
7. References	
Arabic Abstract	

List of Figures:

Figure (1.1): The Energy Consumption Rate	4
Figure (1.2): Abstract of Research Methodology & Structures	8
Figure (1.3): The Research Structure	
Figure (1.4): The Research Focus	
Figure (1.5): Classification of the New Settlements in Egypt	14
Figure (2.1): The Three Circles of Sustainability	19
Figure (2.2): The three interlocking circles	20
Figure (2.3): The three overlapping circles	20
Figure (2.4): The sustainable neighborhoods as a critical link	22
Figure (2.5): An eco-cycle model has been developed in the building, until it reaches the city levels	23
Figure (2.6): Walking distance within neighborhoods and communities	24
Figure (2.7): Relation of themes, goals, indicators and metrics in a sustainable neighborhood	28
Figure (2.8): Swiss Village in Masdar City	29
Figure (2.9): Example of complete street	30
Figure (2.10): Example of bike parking	30
Figure (2.11): Example of bike parking	30
Figure (2.12): Masdar city street network	31
Figure (2.13): Example of Streetcar in Portland	32
Figure (2.14): Example of light rail lines	32
Figure (2.15): Conventional bus and rail transit in Maryland's transportation network	
Figure (2.16): Hi-speed rail between Bangkok – Chiang	33
Figure (2.17): Intelligent Transport Systems	33
Figure (2.18): Transport Systems	33
Figure (2.19): Example of electric car	34
Figure (2.20): E-Trike ZED	34
Figure (2.21): The personal rapid transit (PRT)	34
Figure (2.22): Example of connecting Energy system	
Figure (2.23): Different passive techniques	
Figure (2.24): Smart Grid Ecosystem	
Figure (2.25): Different forms of renewable energy resources	
Figure (2.26): Residential Grid connected PV system	
Figure (2.27): Parking lot-based on PV systems	
Figure (2.28): Reuse Water on Site	
Figure (2.29): Example of waste management process	
Figure (2.30): Waste processing systems	
Figure (2.31): Zero carbon waste strategy applied to urban high density master plans	
Figure (2.32): Example of Recycling materials like: tires, wood pallet, bottles	
Figure (2.33): Diagram shows the local organic farm	
Figure (2.34): Example of urban sustainability indicators	
Figure (2.35): A new method for assessing the sustainability of urban neighborhoods and is named	
CAMESUD	47
Figure (2.36): Principles of BioRegional One Plant Living framework	
Figure (2.37): Principles of Eco- town framework	
Figure (2.38): Principles of LEED certification	

Figure (2.39): LEED Certification levels	51
Figure (2.40): Timeline of the development rating tools in different countries	53
Figure (2.41): Factors governing BREEAM ratings for the building	53
Figure (2.42): Factors governing DGNB ratings for the buildings	54
Figure (2.43): System models of DGNB	54
Figure (2.44): comparison between BREEAM, LEED and DGNB for new office building	55
Figure (2.45): The sustainability measures of neighborhood	57
Figure (3.1): The Greenhouse effect	60
Figure (3.2): Inverse relation between rate of oil discovery and production	60
Figure (3.3): Sustainable energy plan hierarchy	62
Figure (3.4): Primary energy consumption in building	63
Figure (3.5): Influences of energy conservation	63
Figure (3.6): The main common principles at the urban scale	65
Figure (3.7): The building's orientation is measured by azimuth	65
Figure (3.8): Subdivision lot lines and streets.	66
Figure (3.9): Massing and orientation of buildings to prevent exposure to solar gains	66
Figure (3.10): The the ideal orientation of the house	67
Figure (3.11): The long axis of the house should be east-west	67
Figure (3.12): The effect of the overhang	67
Figure (3.13): Roof overhangs proper depth	67
Figure (3.14): Using landscaping elements to offer shade on the building's side	68
Figure (3.15): The wind direction according to buildings' orientation	68
Figure (3.16): Wind-rose diagram showing statistics of wind speed and direction throughout the year	69
Figure (3.17): Landscape elements with their close link with the wind conditions at the site	69
Figure (3.18): The best orientation for maximum passive ventilation	70
Figure (3.19): Relation between building orientation and wind	70
Figure (3.20): Relation between main wall's direction and wind	70
Figure (3.21): Relation between buildings' distances and wind flow	70
Figure (3.22): Air flow diagram for staggered block	70
Figure (3.23): Ideal solar access	72
Figure (3.24): Solar subdivision layouts	72
Figure (3.25): H/W ration and Sky view Factor	73
Figure (3.26): The average ratio of street sections	73
Figure (3.27): Effect of the building color on the sun reflection	74
Figure (3.28): Effect of the building skin on the sun reflection	75
Figure (3.29): Black rooftops versus white roof	76
Figure (3.30): Difference between black rooftops and white roof	
Figure (3.31): Effect of the water bodies inside the court	77
Figure (3.32): Masdar City as an example of high density neighborhood	79
Figure (3.33): Different type of tree planting in different seasons	80
Figure (3.34): Shadows length related to tree height.	81
Figure (3.35): Shows wind behavior over a windbreak	81
Figure (3.36): Effect of different types of trees on wind direction	82
Figure (3.37): Effect of different density of trees and height on wind direction	
Figure (3.38): Buildings spacing which promotes the airflow	
Figure (3.39): The most efficient building shape	

Figure (3.40): Comparison between different building mass	85
Figure (3.41): Energy consumption within residential building	86
Figure (3.42): Building envelope components	87
Figure (3.43): Main common principles of the architectural scale	
Figure (3.44): EIFS insulation layer which can be used	
Figure (3.45): The comparison between the rooftop garden and the ordinary roof	
Figure (3.46): Illustrates a comparison between the performance of a cool roof and uncoated roof	
Figure (3.47): Better and worse massing for daylighting	
Figure (3.48): Building footprints for best daylight access	
Figure (3.49): Useful daylight and unwanted glare on different faces of a building	97
Figure (3.50): Effective height of daylight glazing	
Figure (3.51): Different types of skylight windows	
Figure (3.52): Illustrates heat losses through the opening	
Figure (3.53): Illustrates the window to wall ratios	
Figure (3.54): Different window-to-wall ratios and the resulting illumination	
Figure (3.55): The different style of windows	
Figure (3.56): The glass layers and the air spaces resist heat flow	
Figure (3.57): Low- emittance coating glass filled with argon gas	
Figure (3.58): Thermally-broken window frame	
Figure (3.59): Certifying window thermal performance	
Figure (3.60): The places where the heat transfer	
Figure (3.61): The moisture barrier system	
Figure (3.62): The effect of the insulation system	
Figure (3.63): The effect of the shading device all year round	
Figure (3.64): The different type of shading devices	
Figure (3.65): The fixed overhang	
Figure (3.66): Types of overhangs	
Figure (3.67): The proper size of shading elements	
Figure (3.68): Horizontal and vertical louvers	
Figure (3.69): Internal and external louvers	
Figure (3.70): Components of light shelves	
Figure (3.71): Design considerations for light shelves	
Figure (3.72): Double skin facades	
Figure (3.73): Distribution of wind-induced pressure over the surface of a building,	
Figure (3.74): Narrow building help in cross ventilation	
Figure (3.75): Ventilation guidelines for room dimensions	
Figure (3.76): Air flow in relation to wall openings	
Figure (3.77): Windward and leeward faces	
Figure (3.78): Different wing walls of better and worse effectiveness on same wall and adjacent walls	
Figure (3.79): The effective location and distances between openings.	
Figure (3.80): The stack effect	
Figure (3.81): Lower air pressures at higher heights can passively pull air.	
Figure (3.82): Special wind cowls in the BedZED development	
Figure (3.83): A typical natural ventilation strategy with an internal atrium	
Figure (3.84): Layout of a traditional grid system	
Figure (3.85): Smart community conceptual model in Japan	
Figure (3.86): Evolution from the traditional grid architecture to the smart grid	127

Figure (3.87): Smart grid components	128
Figure (3.88): Example of the smart grid	129
Figure (3.89): The smart building	131
Figure (3.90): Renewable energy sources	134
Figure (3.91): Calcification of renewable energy sources	135
Figure (3.92): Overview of possible off-site and on-site renewable supply options	137
Figure (3.93): PV on building's roof	141
Figure (3.94): PV cells integrated into the window	141
Figure (3.95) Example of the exterior light	141
Figure (3.96): Pv on parking lots at BedZED	
Figure (3.97): New flexible solar modules	
Figure (3.98): Example of the solar modules	142
Figure (3.99): Examples of solar heating system	
Figure (3.100): A diagram of a geothermal heat pump system	
Figure (3.101): Building-integrated wind	
Figure (3.102): Examples of the mini wind turbines used at buildings	
Figure (3.103): Shows the energy labels for residential buildings	
Figure (3.104): Shows the EPC certificate	
Figure (3.105): Shows the HERS certificate and HERS Index Score	
Figure (3.106): Comparison of residential energy codes and standards of relative to HERS index	
Figure (4.1): The location of the examples	
Figure (4.2): The kind and the cause of the selection of the example	
Figure (4.3): BedZED	
Figure (4.4): BedZED sustainability approach	
Figure (4.5): BedZED master plan.	
Figure (4.6): BedZED rainwater and recycled water use system	
Figure (4.7): Shows the effect of the good orientation in BedZED	
Figure (4.8): BedZED's buildings are orientated for passive solar gain	
Figure (4.9): Sedum roof used in BedZED	
Figure (4.10): Grass turfed sky garden roofs used in BedZED	
Figure (4.11): Wind cowls work enhance the ventilation within the building	
Figure (4.12): Roof lights used in BedZED	
Figure (4.13): Bio- fuelled combined heat and power used in BedZED	
Figure (4.14): The integrated PV panels used in BedZED's building	
Figure (4.15): Shows that Masdar city is designed into two squares	
Figure (4.16): Shows the mission of Masdar City	
Figure (4.17): Masdar city is implementing the "one planet living" sustainability strategy	
Figure (4.18): Comparison between the design of a conventional city and design of Masdar City	
Figure (4.19): Shows the variety of functions within Masdar City	179
Figure (4.20): The concept of zero waste within Masdar city	179
Figure (4.21): Shows the waste collection network	179
Figure (4.22): Masdar City Layering	
Figure (4.23): The personal rapid transit system	
Figure (4.24): Masdar's Public transportation network	181
Figure (4.25): The mobility grid in Masdar City	181
Figure (4.26): Desalinization plant location.	181